

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 1

https://www.vostrikova.info/teaching

Lecture 1-2
1. Rules of interpretation

1.1 Recap from Part 1 of this course and some slight changes in our notation

1.1.1 Intransitive verbs

(1)

This rule is designed for sentences of this shape:

(2)

(3) ⟦smokes⟧s = λy. ⊢y smokes in s ⊣

(4) ⟦John⟧s = John

(5) ⟦John	smokes⟧s = ⊢John smokes in s ⊣

(6)

I am going to use a slightly different notation to represent the same thing.

2.6. COMPOSITIONALITY OF INTENSIONS

The same holds for other types of verbs: who is kissing whom; who is showing
what to whom; etc. all depends on the situation at hand.

A simple example should now make clear how the intensions given in
(40) determine the intensions of the complex expressions in which they occur,
viz., solely due to the above compositional combinations of the corresponding
extensions. The following sentence is a case in point:

(41) Olaf küsst Maria.
[⇡ Olaf is kissing Maria]

The intension of (41) is a function that assigns to every situation s2LS the
extension of (41) in s. The latter may in turn be determined by the general
compositional rule (14) from Section 2.2:

(14) Compositional Determination of the Extension of Subject-Predications
If S is a sentence with a predicate P and a proper name NN as its
subject, the for all s2LS the following holds:
JSKs = JP Ks(JNNKs)

From (14) and (39a) we conclude:

(42) JOlaf küsst MariaK
= �s.JOlaf küsst MariaKs
= �s.Jküsst MariaKs(JOlafKs)

The extensions of the predicate (for arbitrary situations s) mentioned in the
last line may in turn be determined from the extensions of the verb and the
object, following the compositional rule (24) from Section 2.4:

(24) Compositional Determination of the Extensions of Direct-Object-
Predications
If P is a predicate consisting of a transitive verb V and a proper
name NN as its direct object, then for all s 2LS the following holds:
JP Ks = JV Ks(JNNKs).

(24) can now be used to extend the chain of equations in (42):

(420) JOlaf küsst MariaK
= . . .
= �s.JküsstKs(JMariaKs)(JOlafKs)
= �s.JküsstK(s)(JMariaK(s))(JOlafK(s))

The final transition is due to (39b). Now the equations (40) apply; for clarity
we rename the variables (whose names are arbitrary anyway) and add a few
brackets:

(4200) JOlaf küsst MariaK

72

S

P

smokes

NN

John

S

P

NN

Mary

V

loves

NN

John

S

P

smokes

QN

boyevery

S

smokesJohn

S

P

Maryloves

John

S

smokes

every boy

1

2.2. SUBJECT-PREDICATION

undone in any particular case where it is clear what the dots stand for. In
our case ‘. . . x . . . ’ stands for: ‘x has a cough in s⇤’.

In case the condition ‘. . . x . . . ’ has the form ‘x2A’ (where A is some set),
D2.1 immediately implies that the set defined by this abstraction coincides
with the set A; for according to 2.1, x2{x | x2A} holds for any x iff x2A,
which means that {x | x2A} = A, by the Principle of Extensionality. This
elementary fact, which we will sometimes exploit, has a name:

(10) Comprehension Principle
For all sets A it holds: {x |x 2 A} = A.

The above determination of the predicate extension obviously does not de-
pend on our specific example; quite generally, predicate extensions are char-
acteristic functions. Thus, given a situation, the extension of ist eine Insel
[⇡ is an island] characterizes the set of islands in that situation; the ex-
tension of schläft [⇡ is sleeping] is the characteristic function of the set of
individuals that are asleep in the given situation, etc.:

(9) b. Jist eine InselKs⇤(x) =
⇢

1, if x is an island in s⇤;
0 otherwise

c. JschläftKs⇤(x) =
⇢

1, if x is sleeping in s⇤;
0 otherwise

A notational trick helps avoiding the case distinctions in the equations (9)
by directly referring to the truth value of a given statement:4

D2.2 If ' is a statement, then `'a is the truth value of '; i.e.:
• `'a = 1 if ' is the case; and
• `'a = 0 otherwise.

Using this notation, the equations in (9) can be simplified as follows:

(11) a. Jhat HustenKs⇤(x) = `x has a cough in s⇤a;
b. Jist eine InselKs⇤(x) = `x is an island in s⇤a
c. JschläftKs⇤(x) = `x is sleeping in s⇤a

Since sets of individuals and their characteristic functions stand in a one-one
relation to each other, we will sometimes talk of the extension of a predicate
taken as a set and use a special notation for this:

(12) a. #Jhat HustenKs⇤ = {x | x has a cough in s⇤};
b. #Jist eine InselKs⇤ = {x | x is an island in s⇤};
c. #JschläftKs⇤ = {x | x is sleeping in s⇤}.

For the general case, the notation used in (12) can be defined as follows:

4In other words: `'a is that truth value that is identical with 1 iff '.

58

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 2

(7) ⟦smokes⟧s = λy. y smokes in s

(8) ⟦John	smokes⟧s = T	iff	John smokes in s

or

(9) ⟦John	smokes⟧s = 1	iff	John smokes in s

1.1.2 Transitive verbs

(10)

This rule is designed for sentences of this shape:

(11)

(12) ⟦loves⟧s = [λx.[λy. y loves x in s]]

(13) ⟦loves Mary⟧s =
⟦loves⟧s (⟦Mary⟧s) =
[λx.[λy. y loves x in s]] (Mary) =
[λy. y loves Mary in s]

1.1.3 Quantifiers

(14)

2.6. COMPOSITIONALITY OF INTENSIONS

The same holds for other types of verbs: who is kissing whom; who is showing
what to whom; etc. all depends on the situation at hand.

A simple example should now make clear how the intensions given in
(40) determine the intensions of the complex expressions in which they occur,
viz., solely due to the above compositional combinations of the corresponding
extensions. The following sentence is a case in point:

(41) Olaf küsst Maria.
[⇡ Olaf is kissing Maria]

The intension of (41) is a function that assigns to every situation s2LS the
extension of (41) in s. The latter may in turn be determined by the general
compositional rule (14) from Section 2.2:

(14) Compositional Determination of the Extension of Subject-Predications
If S is a sentence with a predicate P and a proper name NN as its
subject, the for all s2LS the following holds:
JSKs = JP Ks(JNNKs)

From (14) and (39a) we conclude:

(42) JOlaf küsst MariaK
= �s.JOlaf küsst MariaKs
= �s.Jküsst MariaKs(JOlafKs)

The extensions of the predicate (for arbitrary situations s) mentioned in the
last line may in turn be determined from the extensions of the verb and the
object, following the compositional rule (24) from Section 2.4:

(24) Compositional Determination of the Extensions of Direct-Object-
Predications
If P is a predicate consisting of a transitive verb V and a proper
name NN as its direct object, then for all s 2LS the following holds:
JP Ks = JV Ks(JNNKs).

(24) can now be used to extend the chain of equations in (42):

(420) JOlaf küsst MariaK
= . . .
= �s.JküsstKs(JMariaKs)(JOlafKs)
= �s.JküsstK(s)(JMariaK(s))(JOlafK(s))

The final transition is due to (39b). Now the equations (40) apply; for clarity
we rename the variables (whose names are arbitrary anyway) and add a few
brackets:

(4200) JOlaf küsst MariaK

72

S

P

smokes

NN

John

S

P

NN

Mary

V

loves

NN

John

S

P

smokes

QN

boyevery

S

smokesJohn

S

P

Maryloves

John

S

smokes

every boy

1

CHAPTER 3. QUANTIFICATION

in case this set does not contain any person.1 Thus if X is a predicate
extension, JniemandKs⇤ assigns to X the truth value 1 just in case the set
characterized by X does not overlap with the set Pers⇤ of persons in s⇤:

(6) JniemandKs⇤(X) = 1 iff #X \ Pers⇤ = ;

Given the lambda-notation, the equation (6), which holds for any predicate
extension X and situation s⇤, can be reformulated thusly:2

(7) JniemandKs⇤ = �X.`#X \ Pers⇤ = ;a

Since the extension of niemand [⇡ nobody] has been constructed by ab-
straction, the compositionality of the extensions is once more guaranteed:
the truth value of a sentence S formed by putting a quantifying noun phrase
in subject position derives from applying the extension of the subject QN to
the extension of the predicate P, i.e., by functional application:

(8) Compositional Determination of the Extension of Subject-Quantifications
If S is a sentence with a predicate P and a quantifying noun phrase
QN as its subject, then the following holds for all s 2 LS:
JSKs = JQNKs(JP Ks).

It should be noted that the direction of functional application has been
reversed vis-à-vis the subject-predications analyzed in the preceding chapter
(under (37)); for there it was the predicate extension that was applied to
the extension of the subject, wheres in quantifications it is the other way
round. This difference is grammatically conditioned in the sense that we
assume (like many syntacticians) that predication and quantification are
distinct constructions. At the end of the chapter we will, however, present
an alternative analysis that does without assuming such a difference.

Given (8), the intension niemand [⇡ nobody] is now fixed too; for ob-
viously (7) applies independently of the specific situation s⇤:

(9) JniemandK = �s.�X.`#X \ Pers = ;a

There are quite a few noun phrases whose semantic extensions and intension
can be constructed in a similar way as that of niemand [⇡ nobody]. We
only look at one example and leave further cases to an exercise and later
sections:

1Maybe pets should sometimes count as persons, too, since (10) may appear false if only
the dog is sleeping; but then perhaps this is a case of a meaning shift to be explained in
pragmatic terms. We leave this interesting question open.

2One should recall that the notation introduced in D2.3 does not indicate the domain of
a function denoted by a lambda-term. In this case it is understood that ‘X ’ stands for
predicate extensions.

77

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 3

This rule is designed for sentences of this shape:

(15)

There is a missed generalization here!

Every time when one expression was a function, and another one could potentially be its
argument, we interpreted the structure by applying the result of interpretation of the
expression that denotes a function to an expression that denotes its potential the argument.

1.2. The Rule of Functional Application

What we now need is a rule that would allow us to compose the denotation of the two
daughter nodes in order to get the denotation of the whole sentence together with its truth
conditions.

This is the first rule of semantic composition that we will introduce. It is called the Rule of
Functional Application (FA) [Heim and Kratzer 1998: 44]:

(16) Functional Application: If α is a branching node that has two daughters — β
and γ — and if ⟦β⟧ is a function whose domain is ⟦γ⟧, then ⟦α⟧ = ⟦β⟧(⟦γ⟧).

Let’s look at a couple of toy examples:

(17)

• the function, which is the denotation of smokes, applies to the individual Mary, which
is the denotation of Mary, and outputs 1 iff Mary smokes.

(18) ⟦S⟧s = by FA

⟦smokes⟧s (⟦Mary⟧s) = by lexicon
λy. y smokes in s (Mary) = by lambda conversion and by our convention

		 T iff Mary smokes

S

P

smokes

NN

John

S

P

NN

Mary

V

loves

NN

John

S

P

smokes

QN

boyevery

S

smokesJohn

S

P

Maryloves

John

S

smokes

every boy

1

S

P

smokes

NN

John

S

P

NN

Mary

V

loves

NN

John

S

P

smokes

QN

boyevery

S

smokesMary

S

P

Maryloves

John

S

smokes

every boy

1

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 4

Notice that FA does not care about the relative order of the function and the argument in the
tree1.

(19)

(20) ⟦VP⟧s = by FA
⟦loves⟧s (⟦Mary⟧s) = by lexicon

 [λx.[λy. y loves x in s]] (Mary) = by lambda conversion
 [λy. y loves Mary in s]

A side note on lambda conversion:

Step 1: find the closest closing square bracket:

[λx.[λy. y loves x in s]] (Mary)

Step 2: delete:

 the lambda term
 the variable following it
 the outer layer of the square brackets
put Mary exactly at the place where that same variable was before:

 [λy. y loves Mary in s]

From now on I will ignore s subscript on the interpretation function.
So instead of writing ⟦loves⟧s, I am just going to write ⟦loves⟧.
Accordingly, I will also not write [λy. y loves Mary in s], I will just write [λy. y loves
Mary] until we will actually need intensions.

1.3. Semantic types and type driven interpretation

We saw that:

• Proper names denote individual objects also known as entities.
• Declarative sentences denote truth values.

1 I will use other labels for certain nodes than the ones Ede was using. The labels I will use are the ones familiar
from a syntax class. You can use any labels you prefer; semantics is blind to this.

S

P

smokes

NN

John

S

P

NN

Mary

V

loves

NN

John

S

P

smokes

QN

boyevery

S

smokesMary

S

VP

Maryloves

John

S

smokes

every boy

1

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 5

Then, we also saw that:

• Intransitive verbs denote functions from entities to truth values.
• Transitive verbs denote functions from entities to functions from entities to truth

values

It is convenient at this point to systematize and label these types of denotations.

Semantic types:

e is the type of individuals
t is the type of truth-values.

In addition to these basic types there derived types for functions.

These are labeled by ordered pairs <s,t>, where the first element stands for the type of the
argument of a function, the second the type of values of this function have.

In general, Dt is the set of possible denotations of type t

The list of possible denotation types we have so far:

(21)
a. The domain of entities De

De = {x: x is an entity}

b. The domain of truth values Dt
Dt = {0,1}

c. The domain of functions from entities to truth values D<e,t>

 D<e,t> = {f: f is from De to Dt}

d. The domain of functions from entities to function from entities to truth values
D<e,<e,t>>

 D<e,<e,t>>= {f: f is from De to D <e,t>}

In a corresponding manner, we will speak about semantic types of expressions

(22)

a. Expressions like Mary, which denote entities, are expressions of semantic type e.
b. Expressions like Mary smokes, which denote truth values, are expressions of
semantic type t.
c. Expressions like smokes are of type <e,t> (which means they denote functions
whose arguments are of type e, and whose values are of type t)
d. Expressions like loves are of type <e,<e,t>> (which means they denote functions
whose arguments are of type e, and whose values are functions of type <e,t>)

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 6

Semantic types of expressions thus reflect the type of the denotations of those expressions.

We can label the expressions in our toy tree with subscripts representing their semantic types:

(23)

The labels now reflect which expression denotes the function, which expression denotes its
argument, and which expression denotes the value.

The denotation of the mother node is thus entirely determined by the denotation of its
daughters (β and γ) and their mode of composition.

This is the principle of type-driven interpretation and it applies to all other configurations that
we’ll look at.

This principle also helps us find the semantic type of a daughter if we know the semantic
types of its sister and mother nodes.

In the tree below, we see that under the type-driven interpretation approach, the only type that
expression γ can be is <e,t>.

(24)

1.4. Rules for Terminal and Non-branching nodes

The toy tree we looked at before is not something that we normally work with.

A more realistic syntactic tree for Mary smokes looks as:

S

P

smokes

NN

John

S

P

NN

Mary

V

loves

NN

John

S

P

smokes

QN

boyevery

S

smokesMary

S

VP

Maryloves

John

St

smokes<e,t>Marye

S

smokes

every boy

1

Virtual NYI - 2024 Introduction to Formal Semantics Petr Kusliy
04.07.2023 Lecture 3 Ekaterina Vostrikova

4

2.3. Type driven interpretation

We can label the expressions in our toy tree with subscripts representing their semantic types:

 Mary smokest

qp
 Marye smokes<e,t>

The labels now reflect which expression denotes the function, which expression denotes its
argument, and which expression denotes the value.

The denotation of the mother node is thus entirely determined by the denotation of its
daughters (β and γ) and their mode of composition.

This is the principle of type-driven interpretation. We’ll use throughout this course.

This principle also helps us find the semantic type of a daughter if we know the semantic types
of its sister and mother nodes. In the tree below, we see that under the type-driven
interpretation approach, the only type that expression γ can be is <e,t>.

 αt
qp

 βe γ

3. Rules for Terminal and Non-branching nodes

However, the toy tree we looked at in (3) is not something that we normally work with. A more
realistic syntactic tree for Mary smokes looks as:

(8) a. S b. [S [NP [N Mary]] [VP [V smokes]]]
qp

 NP VP
 | |
 N V

 | |
 Mary smokes

Here, again our goal is to see how the interpretation of a whole sentence is compositionally
derived from the interpretation of its constituent parts.

We begin with the terminal nodes (the leaves of the syntactic tree). Earlier, we simply assumed
that the interpretation of the terminal nodes is the interpretation of the word. Now, we state it
formally as a rule.

(9) The Terminal Nodes Rule (TN):
If α is a terminal node, ⟦α⟧ is specified in the lexicon.

In (8)a, Mary and smokes are terminal nodes of a syntactic tree.

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 7

(25)

This is an alternative representation of this tree that you will see used a lot in the literature.

(26) [S [NP [N Mary]] [VP [V smokes]]]

Here, again our goal is to see how the interpretation of the whole sentences is derived
compositionally from the interpretation of its constituent parts.

We thus need to be able to assign a denotation to each node in the tree and make sure that the
denotation of each node is derived compositionally.

We begin with the terminal nodes (the leaves of the syntactic tree).

Above (when we looked at our toy tree) we simply assumed that the interpretation of the
terminal nodes is the interpretation of the word.

Now, we state it formally as a rule:

(27) The Terminal Nodes Rule (TN):
If α is a terminal node, ⟦α⟧ is specified in the lexicon.

What about the non-branching nodes N and V and, consequently, NP and VP?

They are not part of the lexicon. To get the interpretation of these nodes, we employ the Rule
of non-branching nodes:

(28) The Non-Branching Nodes Rule (NB):
If α is a non-branching node and β is α’s daughter, then ⟦α⟧ = ⟦β⟧.

The mother and the daughter in a non-branching node are of the same semantic type.

2. Quantifier: their meaning and semantic type

2.1 Introduction

Last time, Ede talked about quantifiers.

S

P

smokes

NN

John

S

P

NN

Mary

V

loves

NN

John

S

P

smokes

QN

boyevery

S

smokesMary

S

VP

Maryloves

John

St

smokes<e,t>Marye

St

VP

V

smokes<e,t>

NP

N

Marye

1

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 8

Here are some examples:

(29) A/some professor A / some professor smokes.
(30) No professor No professor smokes.
(31) Every professor Every professor smokes.
(32) Three professors Three professors smoke.
(33) Many professors Many professors smoke.
(34) Few professors Few professors smoke.
(35) Most professors Most professors smoke.

What is the semantic type of these expressions?

(36)

Option 1

(37)

Option 2

(38)

We are going to see some arguments in favour of Option 2 and against Option 1.

2.2 Option 2 is the way to go!

St

VP
<et>

V

smokes

DP
???

every professor

St

VP
<et>

V

smokes

DP
e

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

every professor

3

St

VP
<et>

V

smokes

DP
???

every professor

St

VP
<et>

V

smokes

DP
e

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

every professor

3

St

VP
<et>

V

smokes

DP
???

every professor

St

VP
<et>

V

smokes

DP
e

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

every professor

3

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 9

2.2.1 Argument 1

• Suppose that we have two VPs – VP1 and VP2 – such that for all x, if ⟦VP1⟧(x) = T
then ⟦VP2⟧(x) = T.

• For example for all x, if ⟦smokes Marlboros⟧(x) = T, then ⟦smokes⟧(x) = T
• Let’s consider a DP of type e, say ‘Chomsky’

• It follows that if ⟦ DP VP1⟧ = T, then ⟦ DP VP2 ⟧ = T.

• ⟦Chomsky smokes Marlboros⟧ = T then ⟦ Chomsky smokes⟧ = T.

The following, however, does not hold:

• if ⟦no professor smokes Marlboros⟧ = T, then ⟦no professor smokes⟧ = T

The DP no professor is not of type e!

2.2.2 Argument 2

• Suppose that we have a VP1 and VP2 – such that VP2 is formed by adding ‘does not’
to VP1

• Then, for any x, ⟦VP1⟧(x) = T iff ⟦VP2⟧(x) = F

• For example, for any x, ⟦smokes⟧(x) = T iff ⟦does not smoke⟧(x) = F

• Let’s consider a DP of type e, say ‘Chomsky’

• ⟦Chomsky smokes⟧ = T iff ⟦Chomsky doesn’t smoke⟧ = F

The following DOESN’T hold:
 ⟦a/some professor smokes⟧ = T iff ⟦a/some professor doesn’t smoke⟧ = F

The following can be the case:
 ⟦a/some professor smokes⟧ = T and ⟦a/some professor doesn’t smoke⟧ = T

The DP a / some professor is not of type e.

2.2.3 Argument 3

• Let’s again consider two VPs: VP1 and VP2 – such that VP2 is formed by adding
‘does not’ to VP1

• Then, for any DP of type e ⟦DP VP1⟧ or ⟦DP VP2⟧ is necessarily true.

• For example ‘Chomsky smokes or Chomsky does not smoke’ is necessarily true.

• We cannot find a scenario/construct a situation when this could be false.

• Now let’s look at ‘every professor’

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 10

• ‘Every professor smokes or every professor does not smoke’ is not necessarily true

• We can find a scenario/ construct a situation when this is false.
§ For example, imagine we have 3 professors: A, B and C.
§ Imagine A smokes, B and C do not smoke.
§ Then it is false that every professor smokes.
§ And it is false that every professor does not smoke.
§ Therefore, it is false that every professor smokes or every professor

does not smoke

• The DP every professor is not of type e.

2.2.4 Argument 4

All sentences below mean the same thing:

(39) John saw Mary.
(40) John is such that he saw Mary.
(41) Mary is such that John saw her.

This does not hold for the following:

(42) Some student saw every professor.

(43) Some student is such that he saw every professor.
This requires that one student, say, John saw every professor.

(44) Every professor is such that some student saw her.
This could be true if for every professor there is a different student who saw her.

• DPs like ‘every professors’, ‘some professor’, ‘no professor’ are not of type e:

• Therefore, they must be of type <<e,t>,t>

• We call DPs denoting such functions quantificational DPs
• We also use the term ‘Generalized quantifiers’

2.3 The Semantics of Quantificational DPs

St

VP
<et>

V

smokes

DP
???

every professor

St

VP
<et>

V

smokes

DP
e

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

every professor

3

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 11

• Now let’s see what kind of function a quantificational DP denote.

• As an <<e,t>,t> function, the extension of a quantificational DP takes an <e,t> as its

argument and returns a truth value.

• These DPs denote predicates of predicates (or ‘second order predicates/properties)

• They ‘say things about’ their <e,t> arguments.

• “No professor” says that its VP argument is true of no professor

(45) ⟦No professor⟧(⟦VP⟧) = T iff there is no professor x such that ⟦VP⟧(x) = T
(46) ⟦No professor⟧(⟦smokes⟧) = T iff there is no professor x s.t. ⟦smokes⟧(x) = T

• “A / Some professor” says that its VP argument is true of some professor

(47) ⟦A/Some professor⟧(⟦VP⟧) = T iff there is some professor x such that

⟦VP⟧(x) = T
(48) ⟦A professor⟧(⟦smokes⟧) = T iff there is some professor x such that

⟦smokes⟧(x) = T

• “Every professor” says that its VP argument is true of every professor
(49) ⟦Every professor ⟧(⟦VP⟧) = T iff for all x, if x is a professor, then ⟦VP⟧(x) =

T
(50) ⟦Every professor⟧(⟦smokes⟧) = T iff for all x, if x is a professor, then

⟦smokes⟧(x) = T

(51) ⟦no professor⟧ = [λf <e,t>. there is no professor x such that f(x) = T]
(52) ⟦a/some professor⟧ = [λf <e,t> .there is some professor x such that f(x) = T]
(53) ⟦every professor⟧ = [λf <e,t> . for all x, if x is a professor, then f(x) = T]

Another notation that is often used:

(54) ⟦no professor⟧ = [λf <e,t>. ¬$x[x is a professor & f(x) = T]
(55) ⟦a/some professor⟧ = [λf <e,t> .$x[x is a professor & f(x) = T]
(56) ⟦every professor⟧ = [λf <e,t> ."x[x is a professor® f(x) = T]

,

(57)

St

VP
<et>

V

smokes

DP
???

every professor

St

VP
<et>

V

smokes

DP
e

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

every professor

3

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 12

The derivation:
(58)

⟦S⟧ = by FA
⟦DP⟧ (⟦VP⟧)= by 3 applications of NN
⟦every professor⟧ (⟦smokes⟧) = by TN and the lexicon
 [λf <et> . for all x, if x is a professor, then f(x) = T] (λye.y smokes) =
T iff for all x, if x is a professor, then [λye.y smokes](x) =T =
T iff for all x, if x is a professor, then x smokes

2.4. The internal composition of a quantificational DP

• Clearly, we can substitute the noun ‘professor’ with any other noun and get a different
quantificational statement:

(59) Every student smokes

• We want to account for this fact

• Thus, we want to figure out what the semantics of the determiner ‘every’ is.

We call determiners of type <<e,t>,<<e,t>,t>> quantificational determiners.

Given that every, no, some are of type <<et>, <<e,t>, t>>, it follows that they compose with
the NP via FA

(60) ⟦every professor⟧ = ⟦every⟧(⟦professor⟧)
(61) ⟦no professor⟧ = ⟦no⟧(⟦professor⟧)
(62) ⟦a/some professor⟧ = ⟦a/some⟧(⟦professor⟧)

St

VP
<et>

V

smokes

DP
???

every professor

St

VP
<et>

V

smokes

DP
e

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
???

every

St

VP
<et>

V

smokes

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

3

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 13

(63)

Let’s look at the result of putting together a determiner with a noun phrase again:

(64) ⟦every⟧(⟦professor⟧) = [λf <e,t> . for all x, if x is a professor, then f(x) = T]
(65) ⟦no⟧(⟦professor⟧) = [λf <e,t>. there is no professor x such that f(x) = T]
(66) ⟦a/some⟧(⟦professor⟧) = [λf <e,t> .there is some professor x such that f(x) = T

]

Thus, the meaning of the determiners themselves is as follows:

(67) ⟦every⟧= [λp <e,t> . [λf <e,t> . for all x, if p(x)=T, then f(x) = T]]
(68) ⟦no⟧= [λp <e,t> . [λf <e,t>. there is no x such that p(x)=T and f(x) = T]]
(69) ⟦a/some⟧= [λp <e,t> . [λf <e,t> .there is some x such that p(x)=T and f(x) = T]]

We call the argument denoted by the NP ‘the domain of the quantifier’

We call the the argument denoted by the VP ‘the scope of quantifier’

 ‘Every professor smokes’:

o ‘Professor’ is the domain of ‘every’
o ‘Smokes’ is the scope of ‘every’

(70)
⟦S⟧ = by FA
⟦DP⟧ (⟦VP⟧)= by FA
⟦D⟧ (⟦NP⟧) (⟦VP⟧)= by 5 applications of NN
⟦every⟧ (⟦professor⟧) (⟦smokes⟧)= by TN and the lexicon
 [λg<et> .λf <et> . for all x, if g(x)=1, then f(x) = T] (λze.z is a professor) (λye.y smokes) =
λf <et> . for all x, if [λze.z is a professor](x)=T , then f(x) = T =
λf <et> . for all x, if x is a professor, then f(x) = T =
T iff for all x, if x is a professor, then [λye.y smokes](x) =T =
T iff for all x, if x is a professor, then x smokes

St

VP
<et>

V

smokes

DP
???

every professor

St

VP
<et>

V

smokes

DP
e

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
???

every

St

VP
<et>

V

smokes

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

3

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 14

2.5 Quantifier meaning in terms of relation between sets

• We always said there is a close connection between functions and sets.

• One useful way of thinking about the meaning of a quantificational determiner is in
terms of relation between the two sets picked by the characteristic function denoted
by the restrictor and the scope.

(71) ⟦every⟧ = [λg<e,t> . [λf <e,t>. {x: g(x)=T} Í {y: f(y)= T}]]
(72) ⟦no⟧ = [λg <e,t>.[λf <e,t>. {x: g(x)= T} Ç {y: f(y)= T}= Æ]]
(73) ⟦a/some⟧ = [λg <e,t>. [λf <e,t>. {x: g(x)= T} Ç {y: f(y)= T} ¹ Æ]]

The two formulation are completely equivalent

(74) ⟦every professor smokes⟧ = T iff {x: x is a professor} Í {y: y smokes}
(75) ⟦no professor smokes⟧ = T iff {x: x is a professor} Ç {y: y smokes} = Æ
(76) ⟦a/some professor smokes⟧ = T iff {x: x is a professor} Ç {y: y smokes} ¹

Æ

2.6. Explaining the behavior of quantifiers

Argument 1

Earlier Observation:

Contrary to the predictions of a type e analysis, the following can hold:

• ⟦no professor smokes Marlboros⟧ = T and ⟦no professor smokes⟧ = F

Now we can explain this:

• ⟦no professor smokes Marlboros ⟧ = T iff {x: x is a professor} Ç {y: y smokes
Marlboros} = Æ

• ⟦no professor smokes⟧ = F iff {x: x is a professor} Ç {y: y smokes} ¹ Æ

Since the set of smokers can be bigger than the set of Marlboros smokers, it can be that the
intersection of professors and Marlboros smokers is empty, but some professors smoke (in
other words, the intersection of professors and smokers is not empty)

~Ɛūྪ G;���]+�!�͢

ǥ���ྪ ���ྪ Ęྪݐ ���ྪ '�ྪ ��Ý���ྪ ��Ý�5ྪ ���ྪ �'ÝS�ྪ �
���$y���.ྪ �Ýྪ �����ྪ ���ྪ
Ɛ̦ྪ�ǵ ¦ţƑྪ ����Ý"$���ħྪ
éÝ�ྪ�#�ྪ�
���$Ý�ྪ��$��Ý�®�ྪ�Ý��&ྪr ��&ăྪ $�ྪ�������ăྪ�Ý��®�����ྪ�������&ྪ

ʳ ���ྪ '�ྪ !Ý��
����&ྪ ��ྪ !Ý®�Ý��Ϝྪ

{Ý�ྪ �#��ྪ �#Ý$���ྪ Ý!ྪ�
���$y���ྪ ���ྪ �#�ྪ �'ÝS�ྪ y5
���ྪ S�®$&ǜྪ

{Ý�ྪ �7�����ăྪ $!ྪ ��ྪ $�ྪ �#�ྪ y���ྪ y5
��ྪ ���ྪ Ę਺ྪ �ǵ ĘͲྪ �ǵ Ę̓ྪ �ǵ k͔͔ăྪ �ྪ S��$&ྪ
���®Ý5$��ྪ���
®��ྪ < f���'���£ྪ $�ྪ �#�ྪ��&$�S��ྪ����Ý�$�F ˦ ྪ ®$>��$��ྪ $!ྪĘ೙ྪ �ǵ
Ę̓ྪ�ǵ ��ͦ��&ྪĘӕྪ�ǵ k˖͔ྪ < �¶�®�����¡ F Ѳ ྪéÝ��ྪ ����ྪ��$��Ý�`�Ÿ�ྪ �Ý�$Ý�ྪ Ý!ྪS�®$&$��ྪ
$�ྪ ������$�®6�ྪ���ྪXÝ&���ྪÝ��Ϝྪ �ྪ ���®Ý"$��ྪ$�ྪ S�6$&ྪ $!ྪ�S���ྪ $����Ɣ�$��$Ý�ྪÝ!ྪ
ϥ.ྪ ȕ.ྪ ͻྪ S��$!�$�5ྪ �#�ྪ���X$����ྪ �®�Ýྪ S��$y��ྪ ���ྪ �Ý��®
�$Ý�ˋ ̢ ӛྪ

7�Â¬qaw�Ârw¥¬��½Â�ྪܩ��mxV�ÂHw��xK�ÂK�\Â:K�¬qKÂ9�_K�_Â_¦V�wR_ÂKÂV��®�yRµ¬x��ÂR½Â
Ŕ�$'�$Ðྪ ��ྪ�Ý�
���$Ð�&ྪ '�ྪ �#�ྪ �$5#�����#Ź����
��ྪ���#����$�$��ྪ Ŕħྪ ŉ
®��̆ ॡ ϛྪ

Ŕ�Ý����&ྪŤ
���ƕ�ྪ �Ŕ������ྪ˽ӛ
��ྪ��$������ྪ&ͤ������"��£ྪ <��$�þྪ����ྪ��$�ұ
���ྪ $�ྪ åŰƑåྪ ��&ྪ�
'�$�#�&ྪ $�ྪ ��Ļྪ ��	���'
�5ྪ $�ྪ åɂƑڠ F ྪ�
��ྪ '�ྪ����$Ý��&ྪ
��Ý-"ྪ ��ĺ±�ྪ Ý!ྪ ���ྪ �$5#����� ྪ ��Ɣ�
��ྪ ����ྪ �Ý���$'
��&ྪ �©X���$�5ྪ �Ýྪ
�ȅ	��cȅ	:�ȅÃྪ��5$� ƠྪÎ�Ý��ྪ�������ྪ��$��ྪ&��®ྪ�$��ྪ�Ý5$�ྪ�Ý���$�ྪ�Ýྪ�������ྪ
�Ýྪ�Ý�>ྪÝ
�ྪ�ྪ��®�
�
�ăྪ��Ý
"þྪŉ
®��ྪ���ྪ�ྪ5����ྪ��	�����$�$ǳ�˦ྪ '
�ྪ���@͢
616b��|]ő"�͢ž"-F�]őǡJ͢��ö]�"͢1d -͢˳�bJ�Æ��ł�� �͢1�]���͢!���']1�J͢F@͢��1	��}]���͢
����1�]���͢ ��Ɖྪ ��$�ྪ ��&ྪ �Ý��ྪ $�̱
����ྪ Ý�ྪ 	�:�ā���ྪ $�ྪ ���ྪ �e7�ྪ ����
��Æྪ
Ƈ�ྪ����$�
���ྪ]�͢�]!�����͢������]1�͢�1͢ ���͢�L����]1���͢1!͢�����͢-���!�!����]1�͢
1I �͢��"P��͢����"	����Ĳ͢ !��ྪŤǌÃ��ྪ����������&ྪ m�ȯྪ ȯȅ	��ȯྪ$�6
��ĺ��e&Vྪ �8�ྪ!Ý
�ྪ
��$�����6$�-ྪ!�ĺX�ྪ�!ྪ����������ྪ'�ྪ	�ĺ?�ྪ1�Ãȅ	:��Œྪ�!ྪ�����Ɖྪy5_ĺ��ྪ�ץ���Ɖʊ
$�5ྪ �Ýྪ ���ྪ !Ý��Ý�$�5ྪ ������ྪ ՟ ˋ Ơ ྪ

Ť)��*ྪ �ྪ $�ྪ 'ྪ

̉�ྪ �ྪ :Œྪ 'ྪ

��X�ྪ ȅྪ :Œྪ 'ྪ

��&ྪ{ȯ�"�ྪ <	��ȧ"�ྪ��ྪ�ȅ*ྪ '�ྪc�ȯ�ྪ !ȅc�
Œྪ !�ȯྪ�:Œྪ :�)��	:��ྪ�!ྪ\��Ŀ$Ñ���ྪ ��5$�ăྪ
�$��ྪ $��ྪ (�\Ãȅ��ྪ ďȧȅ�	:Ŷ�ȯŒVྪ ȅÃŒ�ྪ �-Ɖ�ĺ��&ྪ 	��ྪ ���ȅ	:��ȅ�ྪ):��ྪ �!ྪď¢ȅ�	�Ŷ�ĺ�ྪ $�ྪ
S��$Ý
�ྪ ��ȅÑ��̅ྪ φ	��ྪ ��ȯ�Œྪ k͔͔ăྪ �n���qǵ ��cͦ /�N�ͦ Ñ�c':��ྪ �:	�ྪ �ÝƔ����ྪ�Ý�&�ྪ
ƱÝ
�ྪé��ྪ�ȯྪ˪҅ŒƢ ञྪ˨-ྪȧ�:)��ŒȅÃྪȅ��ྪ\ȅ�	:�ȧÃȅȯྪȅ!Ŷȯcȅ	:)�ྪ�Ɣ&ྪ��"ȅ	:)ྪܚŒ	ȅ	����	Œྪ
N�͢�L�?�JJ͢ ?"���-1Å�͢ F��N""�͢ �1��"6�J͢ ���͢Ɲ��-���"͢ �ƚ"͢ �6"�ď+�͢Å��͋Æ"͢ 1d͢�,�J"͢
!����]
��͢ D@͢	���J͢ 1d͢��1�"͢ N1!��Ȩ Ȉȉ ȼ ɚ ͢

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 15

Argument 2

Earlier Observation:

 Contrary to the predictions of a type e analysis, the following can hold:

• ⟦a/some professor smokes ⟧ = T and ⟦a/some professor doesn’t smoke ⟧ = T

Now we can explain this:
• ⟦ some professor smokes ⟧ = T iff {x: x is a professor} Ç {y: y smokes} ¹ Æ
• ⟦ some professor doesn’t smoke ⟧ = T iff {x: x is a professor} Ç {y: y does not

smoke} ¹ Æ

If the set of professors include more than one person, then it is possible that some smoke and
some do not.

Argument 3

Earlier Observation:
 Contrary to the predictions of a type e analysis, the following can hold:
 ⟦ [Every professor smokes] or [every professor doesn’t smoke] ⟧ = F

Now we can explain this:

• ⟦every professor smokes ⟧ = T iff {x: x is a professor} Í {y: y smokes}
• ⟦every professor doesn’t smoke ⟧ = T iff {x: x is a professor} Í {y: y does not

smoke}

It can be the case that both of those are false, because the sets of professors and smokers can
have members in common, while it also being the case that not all professors are smokers

Argument 4

• Earlier observation: (77) is ambiguous:

(77) Some student saw every professor.

• Syntactic reorganization has a semantic effect of disambiguation:

(78) Some student is such that he saw every professor.

 This requires that one student, say, John saw every professor.

(79) Every professor is such that some student saw her.
 This could be true if for every professor there is a different student
 who saw her.

We need to develop some tools to understand this interaction!

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 16

3. Quantifiers in the object position

The problem: With the rules we have we cannot interpret quantifiers in the object position
due to the type-mismatch:

• The quantificational DP is looking to combine with a predicate of individuals
(something of type <e,t>)

• The V is of type <<e,t>,t>

(80)

We are going to create the predicate of the right semantic type in syntax by:

• Moving ‘every girl’

• Inserting a pronoun like expression of type e in its place. We are going to call this
expression ‘a trace’. It carries a numerical index

• Inserting a numerical index matching the index on the trace right below the DP

• Introducing a special rule that allows us to interpret the structure of the form [1 a] as
a predicate of individuals.

(81)

3.1 Step 1: traces and pronouns

How do we interpret t1 ?

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

St

VP
<et>

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

V
<e,<e,t>>

loves

DP
e

John

IP3
t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e

loves
<e,<e,t>>

John
e

1

DP
<<e,t>,t>

NP
<e,t>

professor

D
<<e,t>,<<e,t>,t>>

every

IP3

IP2

IP1

vP

passed

DP

many d1 student

1

d2

1

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

St

VP
<et>

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

V
<e,<e,t>>

loves

DP
e

John

IP3
t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e

loves
<e,<e,t>>

John
e

1

DP
<<e,t>,t>

NP
<e,t>

professor

D
<<e,t>,<<e,t>,t>>

every

IP3

IP2

IP1

vP

passed

DP

many d1 student

1

d2

1

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 17

• Some expression in a language do not have a fixed meaning.

• Their meaning can change depending on the context
• We call such expression variables

• For example, we cannot interpret (82) without some contexts.

• This means that the meaning of ‘he’ is not in the lexicon.

(82) He came.

• One sentence can have multiple variables referring to different individuals.
• In order to distinguish between them we are going to assume that they carry a

numerical index.

(83) He1 introduced him2 to him3.

• We are going to have a special function that takes care of the meaning of variables.

• This function maps a numerical index to an individual.
• We are going to call it ‘the assignment function’

• For each conversation we can have a different assignment function

• This accounts for the fact that the meaning of variables is not fixed across the
language.

(84) He1 introduced him2 to him3.

(85)

An alternative way of writing the same (representing g in terms of ordered pairs):

(86) g:={<1, John>, <2, Seth>, <3, Mark>,<4, Bill>}

(87) He1 introduced him2 to him3.

• We need to make our interpretation function relativized to the assignment function.

• We are going to represent it as a superscript on the interpretation function.

IP3

IP2

IP1

vP

her1 childhelped

t1

1

DP

every mother

IP3

IP2

IP1

vP

her4 childhelped

t1

1

DP

every mother

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

a :=

2

664

1 ! Seth
2 ! Mark
3 ! Bill
4 ! John

3

775

g[1 ! x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g


1 ! x
2 ! y

�
:=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

9

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 18

 ⟦a⟧g

• We are going to have a rule that tells us when to look at g

(88) Trace and Pronoun Rule
If an is a trace or a pronoun, n is a numerical index, g is a variable assignment and
nÎDom(g), then ⟦an⟧g=g(n)

• We are going to assume that the interptetation function is always relativised to an

assignment function.

• This assignment becomes relevant when an expression is a pronoun or a trace.

(89) ⟦he1⟧g = g(1)=John
(90) ⟦he2⟧g = g(2)=Seth

• Why? Because of the special rule we have for them!

(91) ⟦he1⟧a = a(1)=Seth
(92) ⟦he2⟧a = a(2)=Mark

(93)

Note that:

(94) ⟦John⟧g = ⟦John⟧a=John
(95) ⟦smokes⟧g = ⟦smokes⟧a=λxe. x smokes

• Now we can give a more precise definition to the notion of a variable.

A terminal symbol a is a variable iff there are assignments g and a sich that ⟦a⟧g ¹ ⟦a⟧a

• ‘He1’ is a variable: it can change its denotation depending on the assignment function;
• ‘John’ is not a variable: it does not change its denotation depending on the assignment

function

With the Step 1 we are ready to interpret one part of the tree, namely IP1:

IP3

IP2

IP1

vP

her1 childhelped

t1

1

DP

every mother

IP3

IP2

IP1

vP

her4 childhelped

t1

1

DP

every mother

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

a :=

2

664

1 ! Seth
2 ! Mark
3 ! Bill
4 ! John

3

775

g[1 ! x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g


1 ! x
2 ! y

�
:=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

9

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 19

(96)

(97)

⟦IP1⟧g = by FA
⟦vP⟧g (⟦John⟧g) = by FA
⟦vP⟧g (⟦t1⟧g) (⟦John⟧g) = by TN
λxe.λye. y loves x (⟦t1⟧g) (John) = by T&P
[λxe.[λye. y loves x]] (g(1)) (John) =
T iff John loves g(1)

As you see, IP1 is of type t, so we are not done constructing the right argument for ‘every
professor’!

The actual truth conditions we want:

 ⟦(96)⟧g = T iff for all x: if x is a professor, then John loves x.

The meaning of ‘every professor’:

(98) ⟦every professor⟧g = [λf. fÎD<e,t> : for all x, if x is a professor, then f(x) = T]

Thus, the desired argument of ‘every professor’:

(99) λxe. John loves x

3.2 Predicate abstraction

(100) Predicate abstraction
If a is a branching node and {b g} is the set of its daughters, where b is a numerical index n,
then for any variable assignment g, ⟦a⟧g = lx. ⟦g⟧g(x/n), where g(x/n) is a function that is just
like g, but it assigns the value x to the numerical index n.

• If you have a structure of the form [a numerical index g], then
• Write lx. before the ⟦⟧g and put the sister of the numerical index (like 1) into these

⟦sister⟧g
• Make sure that the trace with the same numerical index is interpreted as x

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

St

VP
<et>

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

V
<e,<e,t>>

loves

DP
e

John

IP3
t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e

loves
<e,<e,t>>

John
e

1

DP
<<e,t>,t>

NP
<e,t>

professor

D
<<e,t>,<<e,t>,t>>

every

IP3

IP2

IP1

vP

passed

DP

many d1 student

1

d2

1

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 20

• Do this by chaning the assignment function

• What is this?
 g[x/n]

• g is the assignment function
• g[x/n] is a modified assignment function such that:

• n is in its domain
• g[x/n](n) = x
• for all m¹n, g(m) = g[x/n](n)

Possibility 1: the numerical index was not in the domain of g, g[x/1] differs from g in that it
has 1 in its domain and it maps it to x

(101)

(102)

Possibility 2: g already had 1 in its domain and it was mapped to John. g[John/1] does not
differ from g at all.

(103)

(104)

Possibility 3: 1 was in the domain of g, but it was mapped to Mark. g[x/1] differs from g in
that 1 is mapped to x

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[John/1] :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! Mark
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

10

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[John/1] :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! Mark
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

10

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[John/1] :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! Mark
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

10

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[John/1] :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! Mark
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

10

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 21

(105)

(106)

• Given this rule, structures like IP2 will always be interpreted as functions from
individuals to whatever the type of IP1 is.

• In this case IP1 is of type t, as we have already established.
• Thus, IP2 will be a predicate of individuals, in other words, an expression of type

<e,t>

(107)

(108) ⟦IP2⟧g = by Predicate abstraction
lx. ⟦IP1⟧g[x/1] = by FA
lx. ⟦vP⟧g[x/1] (⟦John⟧g[x/1]) = by FA
lx. ⟦loves⟧g[x/1] (⟦t1⟧g[x/1]) (⟦John⟧g[x/1]) = by TN, T&P
[lx. [lz. ly. y loves z] (g[x/1](1)) (John)]= by g[x/1]
[lx. [lz. ly. y loves z] (x)(John)]
lx. John loves x

Binding

• We call the numerical abstractors ‘binders’
• As you can see from the PA rule, their role is to remove the assignment dependency
• Roughly, ‘variable binding’ is any semantic operation which removes (or reduces)

assignment dependency.

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[John/1] :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! Mark
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

10

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[John/1] :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! Mark
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

10

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

IP2

IP1

VP

DP1

t1

V

loves

DP1

John

1

St

VP
<et>

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

V
<e,<e,t>>

loves

DP
e

John

IP3
t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e

loves
<e,<e,t>>

John
e

1

DP
<<e,t>,t>

NP
<e,t>

professor

D
<<e,t>,<<e,t>,t>>

every

1

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 22

(109)

(110)

⟦IP2⟧g = lx. John loves x
⟦every professor⟧ = [λf. fÎD<et> : for all z, if z is a professor, then f(z) = T]

⟦IP3⟧g = by FA
⟦DP⟧g (⟦IP2⟧g)= by our earlier computation
[λf. fÎD<,> : for all z, if z is a professor, then f(z) = T] (lx. John loves x) =
T iff for all z, if z is a professor, then [lx. John loves x](z) = T =
T iff for all z, if z is a professor, then John loves z

• Nothing prevents us from having multiple abstractions in one tree

(111)

(112)

⟦IP4⟧g = by PA
lx. ⟦IP3⟧g[x/1]= by FA
lx. ⟦IP2⟧g[x/1] (⟦Anna⟧g[x/1]) = by PA
[lx. [lz. ⟦IP1⟧g[x/1, z/4]](⟦Anna⟧g[x/1])] = by TN and lexicon

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

St

VP
<et>

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

V
<e,<e,t>>

loves

DP
e

John

IP3
t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e

loves
<e,<e,t>>

John
e

1

DP
<<e,t>,t>

NP
<e,t>

professor

D
<<e,t>,<<e,t>,t>>

every

IP3

IP2

IP1

vP

passed

DP

many d1 student

1

d2

1

IP2

IP1

VP

DP2

Mary

V

saw

DP1

t4

4

IP4
<e,t>

IP3
t

IP2
<e,t>

IP1
t

VP

DP2

t4

V

found

DP1

t1

4

DP

Anna

1

11

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 23

[lx. [lz. ⟦IP1⟧g[x/1, z/4]](Anna)] =
lx. ⟦IP1⟧g[x/1, Anna/4]

[lx.⟦IP1⟧g[x/1, Anna/4]]=by 2 application of FA
[lx. [ly.[la. a found y]] (⟦t4⟧g[x/1, Anna /4]) (⟦t1⟧g[x/1, Anna /4])]= by T&P
[lx. [ly. [la. a found y]] (g[x/1, Anna /4] (4)) (g[x/1, Anna/4](1))] = by g[x/1, Anna/4]
[lx. [ly. [la. a found y]](Anna) (x)] =
[lx. x found Anna]

Practice:

(113)

(114)

(115)

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

4

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

1

IP2

IP1

VP

DP2

him4

V

likes

DP1

John

4

IP2

IP1

VP

DP2

Bill

V

likes

DP1

John

1

8

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

4

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

1

IP2

IP1

VP

DP2

him4

V

likes

DP1

John

4

IP2

IP1

VP

DP2

Bill

V

likes

DP1

John

1

8

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

4

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

1

IP2

IP1

VP

DP2

him4

V

likes

DP1

John

4

IP2

IP1

VP

DP2

Bill

V

likes

DP1

John

1

8

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 24

(116)

(117)

4. Modeling quantifier scope

(118) A student saw every professor.

Reading 1: every professor was seen by a (possibly different) student
 This reading is called ‘the inverse scope reading’

Reading 2: one student saw all professors

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

4

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

1

IP2

IP1

VP

DP2

him4

V

likes

DP1

John

4

IP2

IP1

VP

DP2

Bill

V

likes

DP1

John

1

8

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

4

IP2

IP1

VP

DP2

him4

V

likes

DP1

he1

1

IP2

IP1

VP

DP2

him4

V

likes

DP1

John

4

IP2

IP1

VP

DP2

Bill

V

likes

DP1

John

1

8

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 25

Reading 1:
(119)

⟦IP2⟧g = ly. there is an x such that: x is a student and x saw y
⟦IP3⟧g = T iff for every y: if y is a professor, then there is an x such that: x is a student and x
saw y

Reading 2: one student saw all professors

(120)

(121) ⟦IP4⟧g = ly. for every x: if x is a professor, then y saw x
(122) ⟦IP5⟧g = T iff there is y such that: y is a student and for every x: if x is a

professor, then y saw x

(123) Joe didn't invite a professor.
Reading 1: Joe did not invite any professor, not even one

Reading 2: There is one specific professor such that John did not invite her. (This reading is
compatible with Joe inviting other professors)

Reading 1:

(124)

IP3
t

IP2
<e,t>

IP1
t

VP
<e,t>

t1saw

DP

a student
<<e,t>,t>

1

DP

every professor
<<e,t>,t>

IP5
t

IP4
<e,t>

IP3
t

IP2
<e,t>

IP1

vP

t1read

t2

1

DP

every professor
<<e,t>,t>

2

DP

a student
<<e,t>,t>

8

IP3
t

IP2
<e,t>

IP1
t

VP
<e,t>

t1saw

DP

a student
<<e,t>,t>

1

DP

every professor
<<e,t>,t>

IP5
t

IP4
<e,t>

IP3
t

IP2
<e,t>

IP1

vP

t1saw

t2

1

DP

every professor
<<e,t>,t>

2

DP

a student
<<e,t>,t>

8

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 26

⟦IP4⟧g= T iff it is not the case that there is an x such that: x is a professor and Joe invited x

Reading 2:

(125)

(126)

⟦IP3⟧g= ly. it is not the case that Joe invited y
⟦IP4⟧g= there is a y such that: y is a professor and it is not the case that Joe invited y

5. Quantifier raising?

(127) Some student read every book on the list

Scenario: There are 3 students John, Bill and Mary.
John read book A, Bill book B, Mary book C.
There is no individual student who read every book, but every book was read
by one student or another

We represented QR as a covert (silent) movement operation.

• In order to be able to give ‘every book on the list’ a scope over ‘some student’, we
moved it to a higher position.

IP5
t

IP4
<e,t>

IP3
t

IP2
<e,t>

IP1

vP

t1read

t2

1

DP

every book on the list
<<e,t>,t>

2

DP

some student
<<e,t>,t>

IP4

IP3
t

IP2
<e,t>

IP1
t

VP
<e,t>

t1invited

DP

Joe

1

DP

a professor
<<e,t>,t>

not

12

IP4
t

IP3
<e,t>

IP2
t

IP1
t

VP
<e,t>

t1invited

DP

Joe

not

1

DP

a professor
<<e,t>,t>

13

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 27

• The test for ‘every’>’some’ reading is if the sentence is judged as true if for each book

on the list there could be a different student who read it.

• We represented QR as a movement operation.

• One thing we know from the syntactic literature is that movement is sensitive to
various boundaries (called ‘islands’).

• Thus, the prediction of the movement theory of quantifier scope is that there will be

some contexts where the inverse scope is unavailable.

5.1 Empirical argument one: a finite clause

(128) Some student said that every professor is fantastic.
• Some >every

Scenario: John said: ‘every professor is fantastic!’

• *Every>some
Scenario: There are 3 students John, Bill and Mary.

John said professor A is fantastic, Bill said professor B is fantastic, Mary
said professor C fantastic.
There is no individual student who likes every professor, but for every
professor there is a student who said that that professor is fantastic.

According to the movement theory of scopal interaction, to get the inverse scope reading
‘every professor’ would have to move at LF and be higher than ‘some student’.

The movement is impossible from this position:

(129) *Who did some student say that _ is fantastic?

This is why this reading is not available!

5.1 Empirical argument two: a relative clause

(130) John read a book that was written by every author in the list.

• Some >every
Scenario: John read a book. This one specific book was written by every author on the

list.

• *Every>some

For every author on the list, John read a book written by that author

The movement is impossible from this position:

(131) *Who did John read a book that was written by __.

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 28

7. Other variable binding contexts

• We saw how traces can get bound and serve to form the predicates that we need for
our derivations.

• But notice that pronouns are interpreted in exactly the same way as traces.
• Then we expect them to serve the same function as traces: they can be assignment

independent and serve to form predicates
• Do we have such cases?

The sentence in (132) is ambiguous.

Bound readings of pronouns

(132) Every mother helped her child.

• Reading 1: every mother helped a child of a particular person I am pointing at (say,
Mary).

• Reading 2: Every mother helped her own child.

Reading 1: We say that in this case the pronoun is ‘free’. This means it depends on the
specific assignment function we picked for this context

(133)

(134) ⟦vP⟧g= ly. y helped the child of g(4)
(135) ⟦IP1⟧g= T iff for all y: if y is a mother, then y helped the child of g(4)
(136) ⟦IP1⟧g= T iff for all y: if y is a mother, then y helped the child of Mary

Reading 2: the pronoun is bound

• In this reading there is no specific person ‘her’ refers to. The value of ‘her’ varies with
mothers.

• ‘Every’ scrolls through the individuals of the world and checks if it is true that if an
individual is a mother, then she helped the child of that individual.

• We call this reading ‘a bound reading’
• ‘Her’ does not depend on the specific assignment function we assume in the context.

(137)

IP3

IP2

IP1

vP

her1 childhelped

t1

1

DP

every mother

IP3

IP2

IP1

vP

her4 childhelped

t1

1

DP

every mother

IP1

vP

her4 childhelped

DP

every mother

g :=


3 ! Sue
4 ! Mary

�

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

a :=

2

664

1 ! Seth
2 ! Mark
3 ! Bill
4 ! John

3

775

9

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brașov: July 22-August 2

 29

(138) ⟦IP2⟧g= lx.x helped x’s child

(139) ⟦IP3⟧g= T iff for all y: if y is a mother, then y helped the child of y

IP3

IP2

IP1

vP

her1 childhelped

t1

1

DP

every mother

IP3

IP2

IP1

vP

her4 childhelped

t1

1

DP

every mother

IP1

vP

her4 childhelped

DP

every mother

g :=


3 ! Sue
4 ! Mary

�

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

a :=

2

664

1 ! Seth
2 ! Mark
3 ! Bill
4 ! John

3

775

9

