Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

https://www.vostrikova.info/teaching

Lecture 1-2
1. Rules of interpretation

1.1 Recap from Part 1 of this course and some slight changes in our notation

1.1.1 Intransitive verbs
(1)
Compositional Determination of the Extension of Subject- Predications
If S is a sentence with a predicate P and a proper name NN as its

subject, the for all s€ LS the following holds:
[S]* = [P]*(INNT?)

This rule is designed for sentences of this shape:

(2)
S

PN

John smokes

(3) [smokes]* = Ay. -y smokes in's
(4) [John]® = John
(5) [John smokes]® = John smokes in s

(6)
D2.2 If p is a statement, then Fe- is the truth value of ; i.e.:

o pd=1Iif ¢is the case; and
e =0 otherwise.

I am going to use a slightly different notation to represent the same thing.

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

(7) [smokes]* = Ay. y smokes in s
(8) [John smokes]* = T iff John smokes in s
or

(9) [John smokes]*® = 1 iff John smokes in s

1.1.2 Transitive verbs

(10)
Compositional Determination of the Fatensions of Direct-Object-

Predications
If P is a predicate consisting of a transitive verb V and a proper
name NN as its direct object, then for all s € LS the following holds:

[P]* = [VI*(INNT?).

This rule is designed for sentences of this shape:

(11)
S
/\
John P

N

loves Mary
(12) [loves]*® = [Ax.[Ay. y loves x in s]]

(13) [loves Mary]®=
[loves]® ([Mary]®) =
[Ax.[Ay. y loves x in s]] (Mary) =
[Ay.y loves Mary in s]

1.1.3 Quantifiers

(14)
Compositional Determination of the Extension of Subject-Quantifications
If S is a sentence with a predicate P and a quantifying noun phrase
QN as its subject, then the following holds for all s € LS:

[51° = [@NT*(IPT)-

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
This rule is designed for sentences of this shape:

(15)
S

s

smokes
T~

every boy

There is a missed generalization here!

Every time when one expression was a function, and another one could potentially be its
argument, we interpreted the structure by applying the result of interpretation of the
expression that denotes a function to an expression that denotes its potential the argument.

1.2. The Rule of Functional Application

What we now need is a rule that would allow us to compose the denotation of the two
daughter nodes in order to get the denotation of the whole sentence together with its truth
conditions.

This is the first rule of semantic composition that we will introduce. It is called the Rule of
Functional Application (FA) [Heim and Kratzer 1998: 44]:

(16) Functional Application: If a is a branching node that has two daughters — 3
and y — and if [B] is a function whose domain is [[y], then o = [BI([YD)-

Let’s look at a couple of toy examples:

(17)
S

N

Mary smokes

e the function, which is the denotation of smokes, applies to the individual Mary, which
is the denotation of Mary, and outputs 1 iff Mary smokes.

(18) [S]*=byFA
[smokes]*® ([Mary]*) = by lexicon
Ay. y smokes in s (Mary) = by lambda conversion and by our convention
T iff Mary smokes

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

Notice that FA does not care about the relative order of the function and the argument in the
tree!.

(19)
S
/\
John VP

N

loves Mary

(20) [[VP]*=by FA
[loves]* ([Mary]®) = by lexicon
[Ax.[Ay. y loves x in s]] (Mary) = by lambda conversion
[Ay. y loves Mary in s]

A side note on lambda conversion:

Step 1: find the closest closing square bracket:
[Ax.[Ay. y loves x in s]] (Mary)

Step 2: delete:
the lambda term
the variable following it
the outer layer of the square brackets
put Mary exactly at the place where that same variable was before:

[Ay. y loves Mary in s]

From now on I will ignore s subscript on the interpretation function.
So instead of writing [loves]*, I am just going to write [[loves].

Accordingly, I will also not write [Ly. y loves Mary in s], I will just write [Ly. y loves
Mary] until we will actually need intensions.

1.3. Semantic types and type driven interpretation
We saw that:

e Proper names denote individual objects also known as entities.
e Declarative sentences denote truth values.

!'I will use other labels for certain nodes than the ones Ede was using. The labels I will use are the ones familiar
from a syntax class. You can use any labels you prefer; semantics is blind to this.

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

Then, we also saw that:

e Intransitive verbs denote functions from entities to truth values.
e Transitive verbs denote functions from entities to functions from entities to truth
values

It is convenient at this point to systematize and label these types of denotations.

Semantic types:
e is the type of individuals
t is the type of truth-values.

In addition to these basic types there derived types for functions.

These are labeled by ordered pairs <o,v>, where the first element stands for the type of the
argument of a function, the second the type of values of this function have.

In general, Dt is the set of possible denotations of type t
The list of possible denotation types we have so far:

(21)
a. The domain of entities D.
D. = {x: x is an entity}

b. The domain of truth values D
Di= {0,1}

c. The domain of functions from entities to truth values D<c ¢
D<= {f: fis from Dc to D¢}

d. The domain of functions from entities to function from entities to truth values

D<e’<e’t>>

D<e,<e,t>>= {f f iS from De toD <e,t>}
In a corresponding manner, we will speak about semantic types of expressions

(22)
a. Expressions like Mary, which denote entities, are expressions of semantic type e.

b. Expressions like Mary smokes, which denote truth values, are expressions of
semantic type t.

c. Expressions like smokes are of type <e,t> (which means they denote functions
whose arguments are of type e, and whose values are of type t)

d. Expressions like loves are of type <e,<e,t>> (which means they denote functions
whose arguments are of type e, and whose values are functions of type <e,t>)

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

Semantic types of expressions thus reflect the type of the denotations of those expressions.

We can label the expressions in our toy tree with subscripts representing their semantic types:

(23)
St
/\

Mary, smokes_c -

The labels now reflect which expression denotes the function, which expression denotes its
argument, and which expression denotes the value.

The denotation of the mother node is thus entirely determined by the denotation of its
daughters (P and y) and their mode of composition.

This is the principle of type-driven interpretation and it applies to all other configurations that
we’ll look at.

This principle also helps us find the semantic type of a daughter if we know the semantic
types of its sister and mother nodes.

In the tree below, we see that under the type-driven interpretation approach, the only type that
expression y can be is <e,t>.

(24)

Ot

/\
Be Y

1.4. Rules for Terminal and Non-branching nodes
The toy tree we looked at before is not something that we normally work with.

A more realistic syntactic tree for Mary smokes looks as:

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

(25)

St
/\
NP VP
| |
N Vv

Mary. smokes_. -

This is an alternative representation of this tree that you will see used a lot in the literature.
(26) [s[~e [n Mary]] [ve [v smokes]]]

Here, again our goal is to see how the interpretation of the whole sentences is derived

compositionally from the interpretation of its constituent parts.

We thus need to be able to assign a denotation to each node in the tree and make sure that the

denotation of each node is derived compositionally.

We begin with the terminal nodes (the leaves of the syntactic tree).

Above (when we looked at our toy tree) we simply assumed that the interpretation of the
terminal nodes is the interpretation of the word.

Now, we state it formally as a rule:

(27) The Terminal Nodes Rule (TN):
If o is a terminal node, [[a] is specified in the lexicon.

What about the non-branching nodes N and V and, consequently, NP and VP?

They are not part of the lexicon. To get the interpretation of these nodes, we employ the Rule
of non-branching nodes:

(28) The Non-Branching Nodes Rule (NB):
If o is a non-branching node and B is a’s daughter, then [[a] = [B].

The mother and the daughter in a non-branching node are of the same semantic type.

2. Quantifier: their meaning and semantic type

2.1 Introduction

Last time, Ede talked about quantifiers.

Intro to formal semantics. Part 2.
EGG 2024 in Brasov: July 22-August 2

Here are some examples:

(29) A/some professor
(30) No professor
(31) Every professor
(32) Three professors
(33) Many professors
(34) Few professors
(35) Most professors

What is the semantic type of these expressions?

(36)

every professor Vv
smokes

Option 1
(37)
St

/\
DP VP

e <et>
|

every professor \Y

smokes

Option 2
(38)
St
/\
DP VP

<<Ze,t>,t> <et>
|

every professor \Y%

smokes

Ekaterina Vostrikova

A / some professor smokes.
No professor smokes.
Every professor smokes.
Three professors smoke.
Many professors smoke.
Few professors smoke.
Most professors smoke.

We are going to see some arguments in favour of Option 2 and against Option 1.

2.2 Option 2 is the way to go!

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
2.2.1 Argument 1

Suppose that we have two VPs — VP; and VP, — such that for all x, if [VP1](x) =T
then [VP2](x) =T.

For example for all x, if [smokes Marlboros](x) = T, then [smokes](x) =T
Let’s consider a DP of type e, say ‘Chomsky’

It follows that if [DP VP{] =T, then [DP VP, | =T.

[Chomsky smokes Marlboros]] = T then [Chomsky smokes] = T.

The following, however, does not hold:

if [no professor smokes Marlboros] = T, then [no professor smokes] =T

The DP no professor is not of type e!

2.2.2 Argument 2

Suppose that we have a VP and VP, — such that VP> is formed by adding ‘does not’
to VP4

Then, for any x, [VP1](x) =T iff [VP2](x) =F

For example, for any x, [smokes](x) = T iff [does not smoke]/(x) = F
Let’s consider a DP of type e, say ‘Chomsky’

[Chomsky smokes] = T iff [Chomsky doesn’t smoke] = F

The following DOESN’T hold:

[a/some professor smokes] = T iff [a/some professor doesn’t smoke]] = F

The following can be the case:

[a/some professor smokes] = T and [a/some professor doesn’t smoke] =T

The DP a / some professor is not of type e.

2.2.3 Argument 3

Let’s again consider two VPs: VP and VP> — such that VP> is formed by adding
‘does not’ to VP,

Then, for any DP of type e [DP VP1] or [DP VP.] is necessarily true.
For example ‘Chomsky smokes or Chomsky does not smoke’ is necessarily true.
We cannot find a scenario/construct a situation when this could be false.

Now let’s look at ‘every professor’

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
e ‘Every professor smokes or every professor does not smoke’ is not necessarily true

e We can find a scenario/ construct a situation when this is false.

= For example, imagine we have 3 professors: A, B and C.

* [Imagine A smokes, B and C do not smoke.

= Then it is false that every professor smokes.

* And it is false that every professor does not smoke.

= Therefore, it is false that every professor smokes or every professor
does not smoke

e The DP every professor is not of type e.

2.2.4 Argument 4
All sentences below mean the same thing:
(39) John saw Mary.

(40) John is such that he saw Mary.
(41) Mary is such that John saw her.

This does not hold for the following:

(42) Some student saw every professor.

(43) Some student is such that he saw every professor.
This requires that one student, say, John saw every professor.

(44) Every professor is such that some student saw her.
This could be true if for every professor there is a different student who saw her.

* DPs like ‘every professors’, ‘some professor’, ‘no professor’ are not of type e:
* Therefore, they must be of type <<e,t>,t>
* We call DPs denoting such functions quantificational DPs

* We also use the term ‘Generalized quantifiers’

St
/\
DP VP
<<e,t>t> <et>
|
every professor \Y

smokes

2.3 The Semantics of Quantificational DPs

10

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

Now let’s see what kind of function a quantificational DP denote.

As an <<e,t>,t> function, the extension of a quantificational DP takes an <e,t> as its
argument and returns a truth value.

These DPs denote predicates of predicates (or ‘second order predicates/properties)
They ‘say things about’ their <e,t> arguments.
* “No professor” says that its VP argument is true of no professor

(45) [No professor[([VP]) = T iff there is no professor x such that [VP](x) =T
(46) [[No professor]([smokes]) =T iff there is no professor x s.t. [smokes](x) =T

“A/ Some professor” says that its VP argument is true of some professor

(47) [A/Some professor]([VP]) =T iff there is some professor x such that
[VP](x)=T

(48) [[A professor]([smokes]) = T iff there is some professor x such that
[smokes](x) =T

* “Every professor” says that its VP argument is true of every professor

(49) [Every professor [([VP]) =T iff for all x, if x is a professor, then [VP](x) =
T

(50) [[Every professor]([smokes]) =T iff for all x, if x is a professor, then
[smokes](x) =T

(51) [mno professor] = [Af <. there is no professor x such that f(x) =T]
(52) [a/some professor] = [Af < .there is some professor x such that f(x) =T]
(53) [every professor] = [Af <. for all x, if x is a professor, then f(x) =T]

Another notation that is often used:

(54) [no professor] = [Af <. —3xX[x is a professor & f(x) =T]
(55) [a/some professor] = [Af < .3x[x is a professor & f(x) =T]
(56) [every professor] = [Af < .Vx[x is a professor— f(x) =T]

(57)
S
/\

DP VP

<<et>t> <et>

every professor \Y

smokes

11

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

The derivation:

(58)

[S] = by FA

[DP] ([VP])= by 3 applications of NN

[every professor] ([smokes])= by TN and the lexicon

[M<er> . for all x, if x is a professor, then f(x) =T] (Aye.y smokes) =
T iff for all x, if x is a professor, then [Ay..y smokes](x) =T =
T iff for all x, if x is a professor, then x smokes

2.4. The internal composition of a quantificational DP

St
/\
DP VP
<<e, >, t> <et>
e |
D NP \Y
777 <e,t> ‘
‘ |
every N smokes
professor

* Clearly, we can substitute the noun ‘professor’ with any other noun and get a different

quantificational statement:

(59) Every student smokes

* We want to account for this fact

* Thus, we want to figure out what the semantics of the determiner ‘every’ is.

We call determiners of type <<e,t>,<<e,t>,t>> quantificational determiners.

Given that every, no, some are of type <<et>, <<e,t>, t>>, it follows that they compose with

the NP via FA

(60) [every professor] = [every]([professor])
(61) [no professor] = [no]([professor])
(62) [a/some professor] = [a/some]([professor])

12

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

(63)
St
/\
DP VP
<<Ze,t>t> <et>
|
D NP \Y
<<et>,<<Let>,t>> <e,t> ‘
‘ |
every N smokes
professor

Let’s look at the result of putting together a determiner with a noun phrase again:

(64) [every]([professor]) = [AMf <. . for all x, if x is a professor, then f(x) =T]
(65) [mo]([professor]) = [Af <. there is no professor x such that f(x) =T]
(66) [[a/some]([professor]) = [Af < .there is some professor x such that f(x) =T

]

Thus, the meaning of the determiners themselves is as follows:

(67) [every]=[Ap <> . [M<er=. for all x, if p(x)=T, then f(x) =T]]

(68) [[mo]=[Ap <e> . [M <> there is no x such that p(x)=T and f(x) =T]]

(69) [[a/some]= [Ap <ct>. [M <> .there is some x such that p(x)=T and f(x) =T]]
We call the argument denoted by the NP ‘the domain of the quantifier’
We call the the argument denoted by the VP ‘the scope of quantifier’

‘Every professor smokes’:

o ‘Professor’ is the domain of ‘every’
o ‘Smokes’ is the scope of ‘every’

(70)
[S]= by FA
[DP] ([VP])= by FA
[D] (INP]) (IVP])= by 5 applications of NN

[every] ([professor]) ([smokes])= by TN and the lexicon

[Ag<ct> .Af <> . for all x, if g(x)=1, then f(x) =T] (Azc.z is a professor) (Lye.y smokes) =
M <e> . for all x, if [Az.z is a professor](x)=T , then f(x) =T =

M <> . for all x, if x is a professor, then f(x) =T =

T iff for all x, if x is a professor, then [Ay..y smokes](x) =T =

T iff for all x, if x is a professor, then x smokes

13

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
2.5 Quantifier meaning in terms of relation between sets

* We always said there is a close connection between functions and sets.
* One useful way of thinking about the meaning of a quantificational determiner is in

terms of relation between the two sets picked by the characteristic function denoted
by the restrictor and the scope.

Every a is b b @
Noaisb @ @

Some a is b @

(71) [[every]] = [kg<e,t> . [}Lf<e’t>. {XI g(X)=T} c {y f(y)= T}]]
(72) [mo] = [Ag<c,o.[AMf<co. {X: g(X)=T} N {y: f(y)=T}=I]]
(73) [a/some]] = [Ag<ct>. [M <co. {x: gX)=T} N {y: f(y)=T} =]]

The two formulation are completely equivalent

(74) [every professor smokes] = T iff {x: x is a professor} — {y: y smokes}

(75) [no professor smokes] = T iff {x: x is a professor} N {y: y smokes} =

(76) [[a/some professor smokes] = T iff {x: x is a professor} N {y: y smokes} #
%)

2.6. Explaining the behavior of quantifiers
Argument 1
Earlier Observation:

Contrary to the predictions of a type e analysis, the following can hold:
* [no professor smokes Marlboros] = T and [no professor smokes]| = F

Now we can explain this:
* [no professor smokes Marlboros]| = T iff {x: x is a professor} M {y: y smokes
Marlboros} =&
* [no professor smokes] = F iff {x: x is a professor} M {y: y smokes} # &

Since the set of smokers can be bigger than the set of Marlboros smokers, it can be that the
intersection of professors and Marlboros smokers is empty, but some professors smoke (in
other words, the intersection of professors and smokers is not empty)

14

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
Argument 2

Earlier Observation:

Contrary to the predictions of a type e analysis, the following can hold:
. [a/some professor smokes]| = T and [a/some professor doesn’t smoke]| =T

Now we can explain this:
* [some professor smokes]| = T iff {x: x is a professor} M {y: y smokes} #
* [some professor doesn’t smoke] = T iff {x: x is a professor} N {y: y does not
smoke} #

If the set of professors include more than one person, then it is possible that some smoke and
some do not.

Argument 3
Earlier Observation:
Contrary to the predictions of a type e analysis, the following can hold:

[[Every professor smokes] or [every professor doesn’t smoke | | =F

Now we can explain this:
* [every professor smokes]| = T iff {x: x is a professor} < {y: y smokes}
* [every professor doesn’t smoke || = T iff {x: x is a professor} < {y: y does not
smoke}
It can be the case that both of those are false, because the sets of professors and smokers can
have members in common, while it also being the case that not all professors are smokers
Argument 4

» Earlier observation: (77) is ambiguous:

(77) Some student saw every professor.

* Syntactic reorganization has a semantic effect of disambiguation:

(78) Some student is such that he saw every professor.
This requires that one student, say, John saw every professor.

(79) Every professor is such that some student saw her.
This could be true if for every professor there is a different student

who saw her.

We need to develop some tools to understand this interaction!

15

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
3. Quantifiers in the object position

The problem: With the rules we have we cannot interpret quantifiers in the object position
due to the type-mismatch:

* The quantificational DP is looking to combine with a predicate of individuals
(something of type <e,t>)
* The V is of type <<e,t>,t>

(80)
St

/\
DP VP

e <et>
///\

\
John V DP

<e,<e,t>> <<e,t>,t>
I

loves D NP

<<et>,<<et>t>> <et>
‘ |
every N

professor

We are going to create the predicate of the right semantic type in syntax by:
* Moving ‘every girl’

* Inserting a pronoun like expression of type e in its place. We are going to call this
expression ‘a trace’. It carries a numerical index

* Inserting a numerical index matching the index on the trace right below the DP

* Introducing a special rule that allows us to interpret the structure of the form [1 a] as

a predicate of individuals.

(81)
IP;
t
DP 1P,
<<e,t>,t> <e,it>
D 1 1P,
<<et>,<<et>t>> <e,t> ¢
‘ | —_—
every professor John vP
e <e,t>
—_—
loves t;

<e,<et>> o

3.1 Step 1: traces and pronouns

How do we interpret t; ?

16

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

Some expression in a language do not have a fixed meaning.
Their meaning can change depending on the context

We call such expression variables

For example, we cannot interpret (82) without some contexts.

This means that the meaning of ‘he’ is not in the lexicon.

(82) He came.

One sentence can have multiple variables referring to different individuals.
In order to distinguish between them we are going to assume that they carry a
numerical index.

(83) Hey introduced hims to hims.

We are going to have a special function that takes care of the meaning of variables.
This function maps a numerical index to an individual.

We are going to call it ‘the assignment function’

For each conversation we can have a different assignment function

This accounts for the fact that the meaning of variables is not fixed across the
language.

(84) Hey introduced him; to hims.

(85)

1 — John
2 — Seth

3 — Mark
4 — Bill

An alternative way of writing the same (representing g in terms of ordered pairs):

(86) g:={<1,John>, <2, Seth>, <3, Mark>,<4, Bill>}

(87) Hey introduced hims to hims.

We need to make our interpretation function relativized to the assignment function.

We are going to represent it as a superscript on the interpretation function.

17

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

[o]®

* We are going to have a rule that tells us when to look at g

(88) Trace and Pronoun Rule
If o is a trace or a pronoun, n is a numerical index, g is a variable assignment and
neDom(g), then [on]®=g(n)

* We are going to assume that the interptetation function is always relativised to an
assignment function.

» This assignment becomes relevant when an expression is a pronoun or a trace.

(89) [hei]e= g(1)=John
(90) [he2]¢= g(2)=Seth

* Why? Because of the special rule we have for them!

(91) [hei]*=a(1)=Seth
(92) [hex]*= a(2)=Mark

(93)
1 — Seth
- 2 — Mark
’ 3 — Bill
4 — John
Note that:

(94) [John]#= [John]*>=John
(95) [[smokes]®= [smokes]*=Ax.. X smokes

* Now we can give a more precise definition to the notion of a variable.
A terminal symbol o is a variable iff there are assignments g and a sich that o]|® # o]
* ‘Hei’ is a variable: it can change its denotation depending on the assignment function;

» ‘John’ is not a variable: it does not change its denotation depending on the assignment
function

With the Step 1 we are ready to interpret one part of the tree, namely IP1:

18

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

(96)
IP3
t
DP 1P,
<<et>t> <et>
1 1P,
<<et>,<<et> t>> t
‘ | _—
every professor John vP
e <e,t>
—_ T
loves t;
<e,<et>> ¢
O7)

[IP1]® = by FA

[vP]e([John]®) = by FA

[vP]E ([t:]*) ([John]) =by TN

AXe.Aye. y loves x ([t1]®) (John) = by T&P
[AXe.[Aye. y loves x]] (g(1)) (John) =

T iff John loves g(1)

As you see, [Py is of type t, so we are not done constructing the right argument for ‘every
professor’!

The actual truth conditions we want:
[(96)]¢ = T iff for all x: if x is a professor, then John loves x.
The meaning of ‘every professor’:
(98) [every professor] = [Af. feD<: for all x, if x is a professor, then f(x) =T]

Thus, the desired argument of ‘every professor’:
(99) Axc. John loves x

3.2 Predicate abstraction

(100) Predicate abstraction
If a is a branching node and {3 y} is the set of its daughters, where [is a numerical index n,
then for any variable assignment g, [a]&= Ax. [y]e*™, where g(x/n) is a function that is just
like g, but it assigns the value x to the numerical index n.

* If you have a structure of the form [a numerical index vy], then

* Write Ax. before the [[]& and put the sister of the numerical index (like 1) into these
[sister]s

* Make sure that the trace with the same numerical index is interpreted as x

19

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
* Do this by chaning the assignment function

* What is this?
g[x/n]
* gis the assignment function
* g[x/n] is a modified assignment function such that:
* nisin its domain
© glx/n](n)=x
» for all m#n, g(m) = g[x/n](n)

Possibility 1: the numerical index was not in the domain of g, g[x/1] differs from g in that it
has 1 in its domain and it maps it to x

(101)

2 — Seth
3— Mark
4 — Bill

9=

(102)

1=z

2 — Seth
gle/1] = 3 — Mark

4 — Bill

Possibility 2: g already had 1 in its domain and it was mapped to John. g[John/1] does not
differ from g at all.

(103)

1 — John
| 2= Seth
971 3= Mark

4 — Bull

(104)

1 — John
2 — Seth

3 — Mark
4 — Bill

g[John/1] :=

Possibility 3: 1 was in the domain of g, but it was mapped to Mark. g[x/1] differs from g in
that 1 is mapped to x

20

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
(105)
1 — Mark
2 — Seth
3 — Mark
4 — Bill

(106)
11—z
2 — Seth
glw/1= 15 . vrark
4 — Buall

* Given this rule, structures like IP> will always be interpreted as functions from
individuals to whatever the type of 1P is.

* In this case IPiis of type t, as we have already established.

* Thus, IP, will be a predicate of individuals, in other words, an expression of type
<e,t>

(107)
1P,

T

1 IP,

/\
DP, VP

| N
John V DPy

loves t;

(108) [[IP.]#= by Predicate abstraction
Ax. [IP1]e™1 = by FA
Ax. [vP]e¥ 1 ([John]e¥!1) = by FA
Ax. [loves]e™ ! ([t;]8™1) ([John]#™!) =by TN, T&P
[Ax. [Az. Ay. y loves z] (g[x/1](1)) (John)]= by g[x/1]
[Ax. [Az. Ay. y loves z] (x)(John)]
Ax. John loves x

Binding

* We call the numerical abstractors ‘binders’

* Asyou can see from the PA rule, their role is to remove the assignment dependency

* Roughly, ‘variable binding’ is any semantic operation which removes (or reduces)
assignment dependency.

Intro to formal semantics. Part 2.
EGG 2024 in Brasov: July 22-August 2

(109)

DP 1P,

<<Le,t>,t> <e,t>
IR
1 1P,
t
| —_—

professor John vP
e <e,t>

—_—

loves t;
<e,<et>> o

<<Le,t>,<<et>t>>

\
every

(110)
[IP2]¢= Ax. John loves x

Ekaterina Vostrikova

[every professor] = [Af. fe D« : for all z, if z is a professor, then f(z) =T |

[IP;]¢= by FA
[DP]& ([IP2]#)= by our earlier computation

[Af. feD<: for all z, if z is a professor, then f(z) = T] (Ax. John loves x) =

T iff for all z, if z is a professor, then [Ax. John loves x](z) =T

T iff for all z, if z is a professor, then John loves z

* Nothing prevents us from having multiple abstractions in one tree

(111)
1Py

<et>

1 TP,
t

DP 1P,

‘ <et>

Anna 4//\113 1
t

DP, VP

N

t1 V. DP,

found t4

(112)
[IP4]¢= by PA
Ax. [IP3]e™1=by FA
Ax. [IP2]e¥1 ([Anna]#¥'!)) = by PA

[Ax. [Az. [IP]e¥! 74 |([Anna]#™1)] = by TN and lexicon

22

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

[Ax. [Az. [IP{]e™! %4](Anna)] =

AX. [[IPI]]g[x/l,Anna/4]

[Ax.[IP] e Amna/4T]=by 2 application of FA

[Ax. [Ay.[Aa. a found y]] ([ta]el¥/!> Anna /4]y ([¢;]8> Anna 4]y 1= by T&P

[Ax. [Ay. [Aa. a found y]] (g[x/1, Anna /4] (4)) (g[x/1, Anna/4](1))] = by g[x/1, Anna/4]
[Ax. [Ay. [Aa. a found y]](Anna) (x)] =

[Ax. x found Anna]

Practice:
(113)
1 — John
2 — Seth

9= 35 Mark
4 — Bill

(114)
IP,

T

4 P,

/\
DP, VP

BN

he;, V DP,

likes himy

(115)
P,

T

1 1P,

/\
DP, VP

RPN

h81 A% DP2

likes himy

23

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

(116)
IP,
/\
4 P,
/\
DP, VP

N

John V DP,

likes himy
(117)
1P,
/\
1 1P,
/\
DP, VP

PN

John V DP,

likes Bill

4. Modeling quantifier scope
(118) A student saw every professor.

Reading 1: every professor was seen by a (possibly different) student
This reading is called ‘the inverse scope reading’

Reading 2: one student saw all professors

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
Reading 1:

(119)

1P;
t

DP 1P,

<e,t>

every professor 1 1P,
t

<<et\t>
DP VP
i <et>
T~

a student saw t;
<<e,t>,t>

[IP2]]& = Ay. there is an x such that: x is a student and x saw y
[IPs])#=T iff for every y: if y is a professor, then there is an x such that: x is a student and x
saw 'y

Reading 2: one student saw all professors

(120)
IP5
t
DP 1Py
<e,t>
a stugent 2 1P;

<<e,tXt> t

1P,
<et>
every piofessor 1 1P,
<<e,tXx,t> /\
tQ vP

/N

saw tq

(121) [IP4]&= Ay. for every x: if X is a professor, then y saw x
(122) [IPs]e=T iff there is y such that: y is a student and for every x: if x is a
professor, then y saw x

(123) Joe didn't invite a professor.
Reading 1: Joe did not invite any professor, not even one

Reading 2: There is one specific professor such that John did not invite her. (This reading is
compatible with Joe inviting other professors)

Reading 1:
(124)

25

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2
1P,

/\

not IP3
t

DP 1P,

<e,t>

P
t

a proressor
<<Le t3\t>

DP VP

‘ <e,t>
—_
Joe invited t

[IP4]]5&= T iff it is not the case that there is an x such that: x is a professor and Joe invited x

Reading 2:
(125)
1P,
t
DP 1P;
<e,t>
a professor 1 1P,
<<e, t > \t> t
/\
not 1P,

t

DP VP

‘ <e,t>
—
Joe invited t;

(126)
[IP3]]8&= Ay. it is not the case that Joe invited y
[IP4])5&= there is a y such that: y is a professor and it is not the case that Joe invited y

5. Quantifier raising?
(127) Some student read every book on the list
Scenario: There are 3 students John, Bill and Mary.
John read book A, Bill book B, Mary book C.
There is no individual student who read every book, but every book was read
by one student or another

We represented QR as a covert (silent) movement operation.

* In order to be able to give ‘every book on the list’ a scope over ‘some student’, we
moved it to a higher position.

26

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

* The test for ‘every’>’some’ reading is if the sentence is judged as true if for each book
on the list there could be a different student who read it.

* We represented QR as a movement operation.

* One thing we know from the syntactic literature is that movement is sensitive to
various boundaries (called ‘islands’).

* Thus, the prediction of the movement theory of quantifier scope is that there will be
some contexts where the inverse scope is unavailable.

5.1 Empirical argument one: a finite clause
(128) Some student said that every professor is fantastic.
* Some >every
Scenario: John said: ‘every professor is fantastic!’
* *Every>some
Scenario: There are 3 students John, Bill and Mary.
John said professor A is fantastic, Bill said professor B is fantastic, Mary
said professor C fantastic.
There is no individual student who likes every professor, but for every

professor there is a student who said that that professor is fantastic.

According to the movement theory of scopal interaction, to get the inverse scope reading
‘every professor’ would have to move at LF and be higher than ‘some student’.

The movement is impossible from this position:
(129) *Who did some student say that _is fantastic?
This is why this reading is not available!
5.1 Empirical argument two: a relative clause
(130) John read a book that was written by every author in the list.
e Some >every
Scenario: John read a book. This one specific book was written by every author on the

list.

e *Every>some
For every author on the list, John read a book written by that author

The movement is impossible from this position:

(131) *Who did John read a book that was written by .

27

Intro to formal semantics. Part 2. Ekaterina Vostrikova
EGG 2024 in Brasov: July 22-August 2

7. Other variable binding contexts

We saw how traces can get bound and serve to form the predicates that we need for
our derivations.

But notice that pronouns are interpreted in exactly the same way as traces.

Then we expect them to serve the same function as traces: they can be assignment
independent and serve to form predicates

Do we have such cases?

The sentence in (132) is ambiguous.

Bound readings of pronouns

(132) Every mother helped her child.

Reading 1: every mother helped a child of a particular person I am pointing at (say,

Mary).
Reading 2: Every mother helped her own child.

Reading 1: We say that in this case the pronoun is ‘free’. This means it depends on the
specific assignment function we picked for this context

(133)
P,
/\
DP vP

N

every mother helped her, child

(134) [[vP]®&=Ay. y helped the child of g(4)
(135) [IP{]e=T iff for all y: if y is a mother, then y helped the child of g(4)
(136) [IP{]e=T iff for all y: if y is a mother, then y helped the child of Mary

Reading 2: the pronoun is bound

In this reading there is no specific person ‘her’ refers to. The value of ‘her’ varies with
mothers.

‘Every’ scrolls through the individuals of the world and checks if it is true that if an
individual is a mother, then she helped the child of that individual.

We call this reading ‘a bound reading’

‘Her’ does not depend on the specific assignment function we assume in the context.

(137)

28

Intro to formal semantics. Part 2.
EGG 2024 in Brasov: July 22-August 2

IP;
/\

DP P,

N

every other 1 1P,

T

tl vP

N

helped her; child

(138) [IP:]#= Ax.x helped x’s child

Ekaterina Vostrikova

(139) [IPs]e=T iff for all y: if y is a mother, then y helped the child of y

29

