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Lecture 1-2 
1. Rules of interpretation  
 
1.1 Recap from Part 1 of this course and some slight changes in our notation 
 
1.1.1 Intransitive verbs 

(1)  

 
 
This rule is designed for sentences of this shape: 
 

(2)  

 
 

(3) ⟦smokes⟧s = λy. ⊢y smokes in s ⊣  
 

(4) ⟦John⟧s = John  
 

(5) ⟦John	smokes⟧s = ⊢John smokes in s ⊣  
 

(6)  

 
 
I am going to use a slightly different notation to represent the same thing. 

2.6. COMPOSITIONALITY OF INTENSIONS

The same holds for other types of verbs: who is kissing whom; who is showing
what to whom; etc. all depends on the situation at hand.

A simple example should now make clear how the intensions given in
(40) determine the intensions of the complex expressions in which they occur,
viz., solely due to the above compositional combinations of the corresponding
extensions. The following sentence is a case in point:

(41) Olaf küsst Maria.
[⇡ Olaf is kissing Maria]

The intension of (41) is a function that assigns to every situation s2LS the
extension of (41) in s. The latter may in turn be determined by the general
compositional rule (14) from Section 2.2:

(14) Compositional Determination of the Extension of Subject-Predications
If S is a sentence with a predicate P and a proper name NN as its
subject, the for all s2LS the following holds:
JSKs = JP Ks(JNNKs)

From (14) and (39a) we conclude:

(42) JOlaf küsst MariaK
= �s.JOlaf küsst MariaKs
= �s.Jküsst MariaKs(JOlafKs)

The extensions of the predicate (for arbitrary situations s) mentioned in the
last line may in turn be determined from the extensions of the verb and the
object, following the compositional rule (24) from Section 2.4:

(24) Compositional Determination of the Extensions of Direct-Object-
Predications
If P is a predicate consisting of a transitive verb V and a proper
name NN as its direct object, then for all s 2LS the following holds:
JP Ks = JV Ks(JNNKs).

(24) can now be used to extend the chain of equations in (42):

(420) JOlaf küsst MariaK
= . . .
= �s.JküsstKs(JMariaKs)(JOlafKs)
= �s.JküsstK(s)(JMariaK(s))(JOlafK(s))

The final transition is due to (39b). Now the equations (40) apply; for clarity
we rename the variables (whose names are arbitrary anyway) and add a few
brackets:

(4200) JOlaf küsst MariaK
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2.2. SUBJECT-PREDICATION

undone in any particular case where it is clear what the dots stand for. In
our case ‘. . . x . . . ’ stands for: ‘x has a cough in s⇤’.

In case the condition ‘. . . x . . . ’ has the form ‘x2A’ (where A is some set),
D2.1 immediately implies that the set defined by this abstraction coincides
with the set A; for according to 2.1, x2{x | x2A} holds for any x iff x2A,
which means that {x | x2A} = A, by the Principle of Extensionality. This
elementary fact, which we will sometimes exploit, has a name:

(10) Comprehension Principle
For all sets A it holds: {x |x 2 A} = A.

The above determination of the predicate extension obviously does not de-
pend on our specific example; quite generally, predicate extensions are char-
acteristic functions. Thus, given a situation, the extension of ist eine Insel
[⇡ is an island] characterizes the set of islands in that situation; the ex-
tension of schläft [⇡ is sleeping] is the characteristic function of the set of
individuals that are asleep in the given situation, etc.:

(9) b. Jist eine InselKs⇤(x) =
⇢

1, if x is an island in s⇤;
0 otherwise

c. JschläftKs⇤(x) =
⇢

1, if x is sleeping in s⇤;
0 otherwise

A notational trick helps avoiding the case distinctions in the equations (9)
by directly referring to the truth value of a given statement:4

D2.2 If ' is a statement, then `'a is the truth value of '; i.e.:
• `'a = 1 if ' is the case; and
• `'a = 0 otherwise.

Using this notation, the equations in (9) can be simplified as follows:

(11) a. Jhat HustenKs⇤(x) = `x has a cough in s⇤a;
b. Jist eine InselKs⇤(x) = `x is an island in s⇤a
c. JschläftKs⇤(x) = `x is sleeping in s⇤a

Since sets of individuals and their characteristic functions stand in a one-one
relation to each other, we will sometimes talk of the extension of a predicate
taken as a set and use a special notation for this:

(12) a. #Jhat HustenKs⇤ = {x | x has a cough in s⇤};
b. #Jist eine InselKs⇤ = {x | x is an island in s⇤};
c. #JschläftKs⇤ = {x | x is sleeping in s⇤}.

For the general case, the notation used in (12) can be defined as follows:

4In other words: `'a is that truth value that is identical with 1 iff '.
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(7) ⟦smokes⟧s = λy. y smokes in s 

 
(8) ⟦John	smokes⟧s = T	iff	John smokes in s  

 
or 

 
(9) ⟦John	smokes⟧s = 1	iff	John smokes in s  

 
 
1.1.2 Transitive verbs 
 

(10)  

 
 
 
This rule is designed for sentences of this shape: 
 

(11)  

 
 

(12) ⟦loves⟧s = [λx.[λy. y loves x in s]] 
 

(13) ⟦loves Mary⟧s =  
⟦loves⟧s  (⟦Mary⟧s) =  
[λx.[λy. y loves x in s]] (Mary) = 
[λy. y loves Mary in s] 

 
1.1.3 Quantifiers 
 

(14)  

 

2.6. COMPOSITIONALITY OF INTENSIONS

The same holds for other types of verbs: who is kissing whom; who is showing
what to whom; etc. all depends on the situation at hand.

A simple example should now make clear how the intensions given in
(40) determine the intensions of the complex expressions in which they occur,
viz., solely due to the above compositional combinations of the corresponding
extensions. The following sentence is a case in point:

(41) Olaf küsst Maria.
[⇡ Olaf is kissing Maria]

The intension of (41) is a function that assigns to every situation s2LS the
extension of (41) in s. The latter may in turn be determined by the general
compositional rule (14) from Section 2.2:

(14) Compositional Determination of the Extension of Subject-Predications
If S is a sentence with a predicate P and a proper name NN as its
subject, the for all s2LS the following holds:
JSKs = JP Ks(JNNKs)

From (14) and (39a) we conclude:

(42) JOlaf küsst MariaK
= �s.JOlaf küsst MariaKs
= �s.Jküsst MariaKs(JOlafKs)

The extensions of the predicate (for arbitrary situations s) mentioned in the
last line may in turn be determined from the extensions of the verb and the
object, following the compositional rule (24) from Section 2.4:

(24) Compositional Determination of the Extensions of Direct-Object-
Predications
If P is a predicate consisting of a transitive verb V and a proper
name NN as its direct object, then for all s 2LS the following holds:
JP Ks = JV Ks(JNNKs).

(24) can now be used to extend the chain of equations in (42):

(420) JOlaf küsst MariaK
= . . .
= �s.JküsstKs(JMariaKs)(JOlafKs)
= �s.JküsstK(s)(JMariaK(s))(JOlafK(s))

The final transition is due to (39b). Now the equations (40) apply; for clarity
we rename the variables (whose names are arbitrary anyway) and add a few
brackets:

(4200) JOlaf küsst MariaK
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CHAPTER 3. QUANTIFICATION

in case this set does not contain any person.1 Thus if X is a predicate
extension, JniemandKs⇤ assigns to X the truth value 1 just in case the set
characterized by X does not overlap with the set Pers⇤ of persons in s⇤:

(6) JniemandKs⇤(X) = 1 iff #X \ Pers⇤ = ;

Given the lambda-notation, the equation (6), which holds for any predicate
extension X and situation s⇤, can be reformulated thusly:2

(7) JniemandKs⇤ = �X.`#X \ Pers⇤ = ;a

Since the extension of niemand [⇡ nobody] has been constructed by ab-
straction, the compositionality of the extensions is once more guaranteed:
the truth value of a sentence S formed by putting a quantifying noun phrase
in subject position derives from applying the extension of the subject QN to
the extension of the predicate P, i.e., by functional application:

(8) Compositional Determination of the Extension of Subject-Quantifications
If S is a sentence with a predicate P and a quantifying noun phrase
QN as its subject, then the following holds for all s 2 LS:
JSKs = JQNKs(JP Ks).

It should be noted that the direction of functional application has been
reversed vis-à-vis the subject-predications analyzed in the preceding chapter
(under (37)); for there it was the predicate extension that was applied to
the extension of the subject, wheres in quantifications it is the other way
round. This difference is grammatically conditioned in the sense that we
assume (like many syntacticians) that predication and quantification are
distinct constructions. At the end of the chapter we will, however, present
an alternative analysis that does without assuming such a difference.

Given (8), the intension niemand [⇡ nobody] is now fixed too; for ob-
viously (7) applies independently of the specific situation s⇤:

(9) JniemandK = �s.�X.`#X \ Pers = ;a

There are quite a few noun phrases whose semantic extensions and intension
can be constructed in a similar way as that of niemand [⇡ nobody]. We
only look at one example and leave further cases to an exercise and later
sections:

1Maybe pets should sometimes count as persons, too, since (10) may appear false if only
the dog is sleeping; but then perhaps this is a case of a meaning shift to be explained in
pragmatic terms. We leave this interesting question open.

2One should recall that the notation introduced in D2.3 does not indicate the domain of
a function denoted by a lambda-term. In this case it is understood that ‘X ’ stands for
predicate extensions.
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This rule is designed for sentences of this shape: 
 

(15)  

 
 
 
There is a missed generalization here!  
 
Every time when one expression was a function, and another one could potentially be its 
argument, we interpreted the structure by applying the result of interpretation of the 
expression that denotes a function to an expression that denotes its potential the argument. 
 
1.2. The Rule of Functional Application  
 
What we now need is a rule that would allow us to compose the denotation of the two 
daughter nodes in order to get the denotation of the whole sentence together with its truth 
conditions. 
 
This is the first rule of semantic composition that we will introduce. It is called the Rule of 
Functional Application (FA) [Heim and Kratzer 1998: 44]: 
 

(16) Functional Application: If α is a branching node that has two daughters — β 
and γ — and if ⟦β⟧ is a function whose domain is ⟦γ⟧, then ⟦α⟧ = ⟦β⟧(⟦γ⟧). 

 
Let’s look at a couple of toy examples:  
 

(17)  

 
 

• the function, which is the denotation of smokes, applies to the individual Mary, which 
is the denotation of Mary, and outputs 1 iff Mary smokes. 

 
(18) ⟦S⟧s = by FA 

⟦smokes⟧s (⟦Mary⟧s) =  by lexicon 
λy. y smokes in s (Mary) = by lambda conversion and by our convention 

		  T  iff Mary smokes 
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Notice that FA does not care about the relative order of the function and the argument in the 
tree1.  
 

(19)  

 
 

(20) ⟦VP⟧s = by FA 
⟦loves⟧s (⟦Mary⟧s) = by lexicon 

   [λx.[λy. y loves x in s]] (Mary) = by lambda conversion 
 [λy. y loves Mary in s] 

 
A side note on lambda conversion: 
 
Step 1: find the closest closing square bracket:  

[λx.[λy. y loves x in s]] (Mary) 
 
Step 2: delete: 

    the lambda term  
    the variable following it 
    the outer layer of the square brackets 
put Mary exactly at the place where that same variable was before: 

 
  [λy. y loves Mary in s] 
 
From now on I will ignore s subscript on the interpretation function. 
So instead of writing ⟦loves⟧s, I am just going to write ⟦loves⟧.  
Accordingly, I will also not write [λy. y loves Mary in s], I will just write [λy. y loves 
Mary] until we will actually need intensions. 
 
 
1.3. Semantic types and type driven interpretation 
 
We saw that: 

• Proper names denote individual objects also known as entities.  
• Declarative sentences denote truth values.  

 
1 I will use other labels for certain nodes than the ones Ede was using. The labels I will use are the ones familiar 
from a syntax class. You can use any labels you prefer; semantics is blind to this. 
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Then, we also saw that: 

 
• Intransitive verbs denote functions from entities to truth values.  
• Transitive verbs denote functions from entities to functions from entities to truth 

values 
 
It is convenient at this point to systematize and label these types of denotations. 
 
 
 
Semantic types: 

e is the type of individuals 
t is the type of truth-values.  

In addition to these basic types there derived types for functions. 

These are labeled by ordered pairs <s,t>,  where the first element stands for the type of the 
argument of a function, the second the type of values of this function have. 

In general, Dt is the set of possible denotations of type t 

The list of possible denotation types we have so far: 
 

(21)  
a. The domain of entities De 

De = {x: x is an entity} 
 

b. The domain of truth values  Dt  
Dt = {0,1} 

 
c. The domain of functions from entities to truth values  D<e,t> 

  D<e,t> = {f: f is from De to Dt} 
 

d. The domain of functions from entities to function from entities to truth values  
D<e,<e,t>> 

  D<e,<e,t>>= {f: f is from De to D <e,t>} 
 
In a corresponding manner, we will speak about semantic types of expressions 
 

(22)  

a. Expressions like Mary, which denote entities, are expressions of semantic type e.  
b. Expressions like Mary smokes, which denote truth values, are expressions of 
semantic type t. 
c. Expressions like smokes are of type <e,t> (which means they denote functions 
whose arguments are of type e, and whose values are of type t) 
d. Expressions like loves are of type <e,<e,t>> (which means they denote functions 
whose arguments are of type e, and whose values are functions of type <e,t>) 
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Semantic types of expressions thus reflect the type of the denotations of those expressions. 
 
We can label the expressions in our toy tree with subscripts representing their semantic types: 
 

(23)  

    
 
 
The labels now reflect which expression denotes the function, which expression denotes its 
argument, and which expression denotes the value. 
 
 
The denotation of the mother node is thus entirely determined by the denotation of its 
daughters (β and γ) and their mode of composition. 
 
 
This is the principle of type-driven interpretation and it applies to all other configurations that 
we’ll look at. 
 
 
This principle also helps us find the semantic type of a daughter if we know the semantic 
types of its sister and mother nodes.  
 
In the tree below, we see that under the type-driven interpretation approach, the only type that 
expression γ can be is <e,t>. 
 

(24)  

 
 
 
1.4. Rules for Terminal and Non-branching nodes 
 
The toy tree we looked at before  is not something that we normally work with.  
 
A more realistic syntactic tree for Mary smokes looks as: 
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2.3. Type driven interpretation 
 

We can label the expressions in our toy tree with subscripts representing their semantic types: 
 
           Mary smokest 

qp 
          Marye       smokes<e,t> 
 
The labels now reflect which expression denotes the function, which expression denotes its 
argument, and which expression denotes the value. 
 

The denotation of the mother node is thus entirely determined by the denotation of its 
daughters (β and γ) and their mode of composition. 
 

This is the principle of type-driven interpretation. We’ll use throughout this course. 
 

This principle also helps us find the semantic type of a daughter if we know the semantic types 
of its sister and mother nodes. In the tree below, we see that under the type-driven 
interpretation approach, the only type that expression γ can be is <e,t>. 
 

      αt   
qp 

 βe             γ 
 

 
3. Rules for Terminal and Non-branching nodes 
 
However, the toy tree we looked at in (3) is not something that we normally work with. A more 
realistic syntactic tree for Mary smokes looks as: 
 

(8) a.          S    b. [S [NP [N Mary]] [VP [V smokes]]] 
qp 

          NP             VP 
           |               | 
           N                       V 

              |                   | 
       Mary         smokes 

 
Here, again our goal is to see how the interpretation of a whole sentence is compositionally 
derived from the interpretation of its constituent parts. 
 
We begin with the terminal nodes (the leaves of the syntactic tree). Earlier, we simply assumed 
that the interpretation of the terminal nodes is the interpretation of the word. Now, we state it 
formally as a rule. 
 

(9) The Terminal Nodes Rule (TN):  
If α is a terminal node, ⟦α⟧ is specified in the lexicon. 

 
In (8)a, Mary and smokes are terminal nodes of a syntactic tree. 
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(25)  

 
 
 
This is an alternative representation of this tree that you will see used a lot in the literature. 
 

(26) [S [NP [N Mary]] [VP [V smokes]]] 
 
 
Here, again our goal is to see how the interpretation of the whole sentences is derived 
compositionally from the interpretation of its constituent parts.  
 
We thus need to be able to assign a denotation to each node in the tree and make sure that the 
denotation of each node is derived compositionally. 
 
 
We begin with the terminal nodes (the leaves of the syntactic tree).  
 
Above (when we looked at our toy tree) we simply assumed that the interpretation of the 
terminal nodes is the interpretation of the word.  
 
Now, we state it formally as a rule:  
 

(27) The Terminal Nodes Rule (TN):  
If α is a terminal node, ⟦α⟧ is specified in the lexicon. 

 
What about the non-branching nodes N and V and, consequently, NP and VP?  
 
They are not part of the lexicon. To get the interpretation of these nodes, we employ the Rule 
of non-branching nodes: 
 

(28) The Non-Branching Nodes Rule (NB): 
If α is a non-branching node and β is α’s daughter, then ⟦α⟧ = ⟦β⟧. 

 
The mother and the daughter in a non-branching node are of the same semantic type. 
 
 
2. Quantifier: their meaning and semantic type 
 
2.1 Introduction 
 
 
Last time, Ede talked about quantifiers. 
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Here are some examples: 
 

(29) A/some professor        A / some professor smokes.  
(30) No professor      No professor smokes.  
(31) Every professor     Every professor smokes.  
(32) Three professors      Three professors smoke.  
(33) Many professors     Many professors smoke.  
(34) Few professors     Few professors smoke.  
(35) Most professors     Most professors smoke.  

 
What is the  semantic type of these expressions? 
 

(36)  

 
 
Option 1 

(37)  

 
 
 
 
Option 2 

(38)  

 
 
We are going to see some arguments in favour of Option 2 and against Option 1.   
 
2.2 Option 2 is the way to go! 
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2.2.1 Argument 1 
 

• Suppose that we have two VPs – VP1 and VP2 – such that for all x, if ⟦VP1⟧(x) = T 
then ⟦VP2⟧(x) = T.   

• For example for all x, if ⟦smokes Marlboros⟧(x) = T, then ⟦smokes⟧(x) = T 
• Let’s consider a DP of type e, say ‘Chomsky’ 

• It follows that if ⟦ DP VP1⟧ = T, then ⟦ DP VP2 ⟧ = T.  

• ⟦Chomsky smokes Marlboros⟧ = T then ⟦ Chomsky smokes⟧ = T.  
 
The following, however, does not hold:  

• if ⟦no professor smokes Marlboros⟧ = T, then ⟦no professor smokes⟧ = T  
 
The DP no professor is not of type e! 
 
 
2.2.2 Argument 2 
 

• Suppose that we have a VP1 and VP2 – such that VP2  is formed by adding ‘does not’ 
to VP1 

• Then,  for any  x, ⟦VP1⟧(x) = T iff ⟦VP2⟧(x) = F   

• For example, for any x, ⟦smokes⟧(x) = T iff ⟦does not smoke⟧(x) = F 

• Let’s consider a DP of type e, say ‘Chomsky’ 

• ⟦Chomsky smokes⟧ = T iff  ⟦Chomsky doesn’t smoke⟧ = F  
 
The following DOESN’T hold:  
 ⟦a/some professor smokes⟧ = T iff ⟦a/some professor doesn’t smoke⟧ = F  
 
The following can be the case:  
 ⟦a/some professor smokes⟧ = T and ⟦a/some professor doesn’t smoke⟧ = T  

 
 

The DP a / some professor is not of type e.  
 
 
 
2.2.3 Argument 3 

• Let’s again consider two VPs:  VP1 and VP2 – such that VP2  is formed by adding 
‘does not’ to VP1 

• Then,  for  any DP of type e ⟦DP VP1⟧  or  ⟦DP VP2⟧ is necessarily true.  

• For example ‘Chomsky smokes or Chomsky does not smoke’ is necessarily true.  

• We cannot find a scenario/construct a situation when this could be false. 

• Now let’s look at ‘every professor’ 
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• ‘Every professor smokes or every professor does not smoke’ is not necessarily true 

• We can find a scenario/ construct a situation when this is false. 
§ For example, imagine we have 3 professors: A, B and C.  
§ Imagine A smokes, B and C do not smoke.  
§ Then it is false that every professor smokes.  
§ And it is false that every professor does not smoke. 
§ Therefore, it is false that every professor smokes or every professor 

does not smoke  

• The DP every professor is not of type e.  
 

 
2.2.4 Argument 4 
 
All sentences below mean the same thing:  
 

(39) John saw Mary. 
(40) John is such that he saw Mary. 
(41) Mary is such that John saw her. 

 
 
This does not hold for the following: 
  

(42) Some student saw every professor.  
 

(43) Some student is such that he saw every professor. 
This requires that one student, say, John saw every professor. 
 

(44) Every professor is such that some student saw her. 
This could be true if for every professor there is a different student  who saw her.  
 

• DPs like ‘every professors’, ‘some professor’, ‘no professor’  are not of type e:  

• Therefore,  they must be of type <<e,t>,t> 

• We call DPs denoting such functions quantificational DPs 
• We also use the term ‘Generalized quantifiers’ 

 

 
 
 
2.3 The Semantics of Quantificational DPs 

St

VP
<et>

V

smokes

DP
???

every professor

St

VP
<et>

V

smokes

DP
e

every professor

St

VP
<et>

V

smokes

DP
<<e,t>,t>

every professor

3



 
Intro to formal semantics. Part 2.                     Ekaterina Vostrikova  
EGG 2024 in Brașov: July 22-August 2 

 11 

 
• Now let’s see what kind of function a quantificational DP denote. 

 
• As an <<e,t>,t> function, the extension of a quantificational DP takes an <e,t> as its 

argument and returns a truth value.  
 

• These DPs denote predicates of predicates (or ‘second order predicates/properties) 
 

•  They ‘say things about’ their <e,t> arguments.  
 

• “No professor” says that its VP argument is true of no professor  
 

(45) ⟦No professor⟧(⟦VP⟧) = T iff there is no professor x such that ⟦VP⟧(x) = T  
(46) ⟦No professor⟧(⟦smokes⟧) = T iff there is no professor x s.t. ⟦smokes⟧(x) = T  

 
• “A / Some professor” says that its VP argument is true of some professor  

 
(47) ⟦A/Some professor⟧(⟦VP⟧) = T iff there is some professor x such that 

⟦VP⟧(x) = T  
(48) ⟦A professor⟧(⟦smokes⟧) = T iff there is some professor x such that 

⟦smokes⟧(x) = T 
 

• “Every professor” says that its VP argument is true of every professor  
(49) ⟦Every professor ⟧(⟦VP⟧) = T iff for all x, if x is a professor, then ⟦VP⟧(x) = 

T  
(50) ⟦Every professor⟧(⟦smokes⟧) = T iff for all x, if x is a professor, then 

⟦smokes⟧(x) = T  
 
 
 

(51) ⟦no professor⟧ = [λf <e,t>. there is no professor x such that f(x) = T ] 
(52) ⟦a/some professor⟧ = [λf <e,t> .there is some professor x such that f(x) = T ]  
(53) ⟦every professor⟧ = [λf <e,t> . for all x, if x is a professor, then f(x) = T ]  

 
Another notation that is often used: 
 

(54) ⟦no professor⟧ = [λf <e,t>. ¬$x[x is a professor & f(x) = T ] 
(55) ⟦a/some professor⟧ = [λf <e,t> .$x[x is a professor & f(x) = T ] 
(56) ⟦every professor⟧ = [λf <e,t> ."x[x is a professor® f(x) = T ]  

, 
 

(57)  
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V
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The derivation: 
(58)  

⟦S⟧ =     by FA 
⟦DP⟧ (⟦VP⟧ )=   by 3 applications of NN 
⟦every professor⟧ (⟦smokes⟧ ) =  by TN and the lexicon  
 [ λf <et> . for all x, if x is a professor, then f(x) = T ]  (λye.y smokes) = 
T iff for all x, if x is a professor, then [λye.y smokes](x) =T   = 
T iff for all x, if x is a professor, then x smokes 
 
 
2.4. The internal composition of a quantificational DP 
 

 
 

• Clearly, we can substitute the noun ‘professor’ with any other noun and get a different 
quantificational statement:  

  
(59) Every student smokes 
 

• We want to account for this fact 

• Thus, we want to figure out what the semantics of the determiner ‘every’ is. 
 
 
We call determiners of type <<e,t>,<<e,t>,t>> quantificational determiners.  
 
Given that every, no, some  are of type <<et>, <<e,t>, t>>, it follows that they compose with 
the NP via FA 
 

(60) ⟦every professor⟧ = ⟦every⟧(⟦professor⟧)  
(61) ⟦no professor⟧ = ⟦no⟧(⟦professor⟧)  
(62) ⟦a/some professor⟧ = ⟦a/some⟧(⟦professor⟧)  
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<<e,t>,t>

every professor

St

VP
<et>

V

smokes

DP
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every
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(63)  

 
 
 
Let’s look at the result of putting together a determiner with a noun phrase again: 
 

(64) ⟦every⟧(⟦professor⟧) = [λf <e,t> . for all x, if x is a professor, then f(x) = T ]  
(65) ⟦no⟧(⟦professor⟧) = [λf <e,t>. there is no professor x such that f(x) = T ] 
(66) ⟦a/some⟧(⟦professor⟧) = [λf <e,t> .there is some professor x such that f(x) = T 

]  
 
 
Thus, the meaning of the determiners themselves is as follows: 
 

(67) ⟦every⟧= [λp <e,t> . [λf <e,t> . for all x, if p(x)=T, then f(x) = T ] ] 
(68) ⟦no⟧= [λp <e,t> . [λf <e,t>. there is no x such that p(x)=T and f(x) = T ]] 
(69) ⟦a/some⟧= [λp <e,t> . [λf <e,t> .there is some x such that p(x)=T and f(x) = T ] ] 

 
We call the argument denoted by the NP ‘the domain of the quantifier’ 
  
We call the the argument denoted by the VP ‘the scope of quantifier’ 
 
        ‘Every professor smokes’: 

o ‘Professor’ is the domain of ‘every’ 
o ‘Smokes’ is the scope of ‘every’ 

 
 

(70)  
⟦S⟧ =     by FA 
⟦DP⟧ (⟦VP⟧ )=   by FA 
⟦D⟧ (⟦NP⟧ ) (⟦VP⟧ )=                             by 5 applications of NN 
⟦every⟧ (⟦professor⟧) (⟦smokes⟧ )=  by TN and the lexicon  
 [λg<et> .λf <et> . for all x, if g(x)=1, then f(x) = T ] (λze.z is a professor) (λye.y smokes) = 
λf <et> . for all x, if [λze.z is a professor](x)=T , then f(x) = T = 
λf <et> . for all x, if x is a professor, then f(x) = T  = 
T iff for all x, if x is a professor, then [λye.y smokes](x) =T   = 
T iff for all x, if x is a professor, then x smokes 
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V
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DP
???

every professor
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2.5  Quantifier meaning in terms of relation between sets 
 

• We always said there is a close connection between functions and sets. 
  

• One useful way of thinking about the meaning of a quantificational determiner is in 
terms of relation between the two sets picked by the characteristic function denoted 
by the restrictor and the scope. 

 

 
 

(71) ⟦every⟧ = [ λg<e,t> . [ λf <e,t>. {x: g(x)=T} Í {y: f(y)= T}] ]  
(72) ⟦no⟧ = [ λg <e,t>.[ λf <e,t>. {x: g(x)= T} Ç {y: f(y)= T}= Æ] ] 
(73) ⟦a/some⟧ = [ λg <e,t>. [ λf <e,t>. {x: g(x)= T} Ç {y: f(y)= T} ¹ Æ] ] 

 
The two formulation are completely equivalent 
 

(74) ⟦every professor smokes⟧ = T iff {x: x is a professor} Í {y: y smokes}  
(75) ⟦no professor smokes⟧ = T iff {x: x is a professor} Ç {y: y smokes} = Æ 
(76) ⟦a/some professor smokes⟧ = T iff  {x: x is a professor} Ç {y: y smokes} ¹ 

Æ 
 
2.6. Explaining the behavior of quantifiers 
 
Argument 1 
 
Earlier Observation:  
   
Contrary to the predictions of a type e analysis, the following can hold:  

•   ⟦no professor smokes Marlboros⟧ = T and ⟦no professor smokes⟧ = F  
 
Now we can explain this: 

• ⟦no professor smokes Marlboros ⟧ = T iff {x: x is a professor} Ç {y: y smokes 
Marlboros} = Æ 

• ⟦no professor smokes⟧ = F iff {x: x is a professor} Ç {y: y smokes} ¹ Æ 
 
Since the set of smokers can be bigger than the set of Marlboros smokers, it can be that the 
intersection of professors and Marlboros smokers is empty, but some professors smoke (in 
other words, the intersection of professors and smokers is not empty) 
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Argument 2 
 
Earlier Observation:  
 
    Contrary to the predictions of a type e analysis, the following can hold:  

•    ⟦a/some professor smokes ⟧ = T and ⟦a/some professor doesn’t smoke ⟧ = T  
 

Now we can explain this: 
• ⟦ some professor smokes ⟧ = T iff {x: x is a professor} Ç {y: y smokes} ¹ Æ 
• ⟦ some professor doesn’t smoke ⟧ = T iff {x: x is a professor} Ç {y: y does not 

smoke} ¹ Æ 
 
If the set of professors include more than one person, then it is possible that some smoke and 
some do not. 
 
Argument 3 
 
Earlier Observation:  
    Contrary to the predictions of a type e analysis, the following can hold:  
      ⟦ [Every professor smokes] or [every professor doesn’t smoke ] ⟧ = F 
 
Now we can explain this: 

• ⟦every professor smokes ⟧ = T iff {x: x is a professor} Í {y: y smokes}  
• ⟦every professor doesn’t smoke ⟧ = T iff {x: x is a professor} Í {y: y does not 

smoke}  
 

It can be the case that both of those are false, because the sets of professors and smokers can 
have members in common, while it also being the case that not all professors are smokers 
 
 
Argument 4 
 

• Earlier observation: (77) is ambiguous:  
 
(77) Some student saw every professor.  

 
 

• Syntactic reorganization has a semantic effect of disambiguation:  
 
(78) Some student is such that he saw every professor. 

                        This requires that one student, say, John saw every professor. 
 

(79) Every professor is such that some student saw her. 
  This could be true if for every professor there is a different student   
 who saw her.  
 
We need to develop some tools to understand this interaction! 
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3. Quantifiers in the object position 
 
The problem:  With the rules we have we cannot interpret quantifiers in the object position 
due to the type-mismatch: 
 

• The quantificational DP is looking to combine with a predicate of individuals 
(something of type <e,t>) 

• The V is of type <<e,t>,t> 
 

(80)  

 
 
We are going to create the predicate of the right semantic type in syntax by: 

• Moving ‘every girl’ 

• Inserting a pronoun like expression of type e in its place. We are going to call this 
expression ‘a trace’. It carries a numerical index 

• Inserting a numerical index matching the index on the trace right below the DP 

• Introducing a special rule that allows us to interpret the structure of the form [1 a] as 
a predicate of individuals. 

 
(81)  

 
 
3.1 Step 1: traces and pronouns 
 
How do we interpret  t1 ?  

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

St

VP
<et>

DP
<<e,t>,t>
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<e,t>

N
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D
<<e,t>,<<e,t>,t>>
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t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e

loves
<e,<e,t>>

John
e

1

DP
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1

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]
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<<e,t>,<<e,t>,t>>
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1
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<<e,t>,t>
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<e,t>
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D
<<e,t>,<<e,t>,t>>
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• Some expression in a language do not have a fixed meaning.  

• Their meaning can change depending on the context 
• We call such expression variables 

• For example, we cannot interpret (82) without some contexts.  

• This means that the meaning of ‘he’ is not in the lexicon.  
  

(82) He came. 
 

• One sentence can have multiple variables referring to different individuals.  
• In order to distinguish between them we are going to assume that they carry a 

numerical index.  
 
(83) He1 introduced him2 to him3. 

 
 

• We are going to have a special function that takes care of the meaning of variables.  

• This function maps a numerical index to an individual. 
• We are going to call it ‘the assignment function’  

• For each conversation we can have a different assignment function 

• This accounts for the fact that the meaning of variables is not fixed across the 
language.  
 
(84) He1 introduced him2 to him3. 

 
 
 
 

(85)  

 
 
An alternative way of writing the same (representing g in terms of ordered pairs): 
 

(86) g:={<1, John>, <2, Seth>, <3, Mark>,<4, Bill>} 
 
 

(87) He1 introduced him2 to him3. 
 
 

• We need to make our interpretation function relativized to the assignment function.  

• We are going to represent it as a superscript on the interpretation function.  

IP3

IP2

IP1

vP

her1 childhelped

t1

1

DP

every mother

IP3

IP2

IP1

vP

her4 childhelped

t1

1

DP

every mother

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

a :=

2

664

1 ! Seth
2 ! Mark
3 ! Bill
4 ! John

3

775

g[1 ! x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g


1 ! x
2 ! y

�
:=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

9
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         ⟦a⟧g 

• We are going to have a rule that tells us when to look at g 
 

(88) Trace and Pronoun Rule 
If an is a trace or a pronoun, n is a numerical index, g is a variable assignment and 
nÎDom(g), then ⟦an⟧g=g(n) 

 
• We are going to assume that the interptetation function is always relativised to an 

assignment function.   
 

• This assignment becomes relevant when an expression is a pronoun or a trace. 
 
(89) ⟦he1⟧g = g(1)=John 
(90) ⟦he2⟧g = g(2)=Seth 
 

• Why? Because of the special rule we have for them! 
 

(91) ⟦he1⟧a = a(1)=Seth 
(92) ⟦he2⟧a = a(2)=Mark 

 
(93)  

 
 
 
  
Note that: 

(94) ⟦John⟧g = ⟦John⟧a=John 
(95) ⟦smokes⟧g = ⟦smokes⟧a=λxe. x smokes 

 
• Now we can give a more precise definition to the notion of a variable. 

 
A terminal symbol a  is a variable iff there are assignments g  and a sich that ⟦a⟧g ¹ ⟦a⟧a  
 

• ‘He1’ is a variable: it can change its denotation depending on the assignment function; 
• ‘John’ is not a variable: it does not change its denotation depending on the assignment 

function 
 
 
With the Step 1 we are ready to interpret one part of the tree, namely IP1:  
 

IP3

IP2

IP1

vP

her1 childhelped

t1

1

DP

every mother

IP3

IP2

IP1

vP

her4 childhelped

t1

1

DP

every mother

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

a :=

2

664

1 ! Seth
2 ! Mark
3 ! Bill
4 ! John

3

775

g[1 ! x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g


1 ! x
2 ! y

�
:=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

9



 
Intro to formal semantics. Part 2.                     Ekaterina Vostrikova  
EGG 2024 in Brașov: July 22-August 2 

 19 

(96)  

 
(97)  

⟦IP1⟧g = by FA 
⟦vP⟧g (⟦John⟧g) = by FA 
⟦vP⟧g (⟦t1⟧g) (⟦John⟧g)  = by TN 
λxe.λye. y loves x (⟦t1⟧g) (John) = by T&P 
[λxe.[λye. y loves x]] (g(1)) (John) = 
T iff John loves g(1)  
 
As you see, IP1 is of type t, so we are not done constructing the right argument for ‘every 
professor’! 
  
 
 
The actual truth conditions we want:  
 
 ⟦(96)⟧g = T iff for all x: if x is a professor, then John loves x. 
 
The meaning of ‘every professor’:  
 

(98) ⟦every professor⟧g = [λf. fÎD<e,t> : for all x, if x is a professor, then f(x) = T ]  
 
Thus, the desired argument of ‘every professor’:  

(99) λxe. John loves x 
 
 
3.2 Predicate abstraction 
 

(100) Predicate abstraction 
If a is a branching node and {b g} is the set of its daughters, where b is a numerical index n, 
then for any variable assignment g, ⟦a⟧g = lx. ⟦g⟧g(x/n), where g(x/n) is a function that is just 
like g, but it assigns the value x to the numerical index n. 
 
 

• If you have a structure of the form [a numerical index g], then 
• Write lx. before the ⟦⟧g and put the sister of the numerical index (like 1) into these 

⟦sister⟧g  
• Make sure that the trace with the same numerical index is interpreted as x 

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

St

VP
<et>

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

V
<e,<e,t>>

loves

DP
e

John

IP3
t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e

loves
<e,<e,t>>

John
e

1

DP
<<e,t>,t>

NP
<e,t>

professor

D
<<e,t>,<<e,t>,t>>

every

IP3

IP2

IP1

vP

passed

DP

many d1 student

1

d2

1
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• Do this by chaning the assignment function 
 
 

• What is this?  
          g[x/n] 

•  g is the assignment function 
•  g[x/n] is a modified assignment function such that: 

• n is in its domain 
• g[x/n](n) = x 
• for all m¹n, g(m) = g[x/n](n)  

 
Possibility 1: the numerical index was not in the domain of g, g[x/1] differs from g in that it 
has 1 in its domain and it maps it to x 
 

(101)  

 
 

(102)  
 

 
 
Possibility 2: g already had 1 in its domain and it was mapped to John. g[John/1] does not 
differ from g at all. 
 

(103)  

 
 
 
 

(104)  

 
 
Possibility 3: 1 was in the domain of g, but it was mapped to Mark. g[x/1] differs from g in 
that 1 is mapped to x 

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2
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3 ! Mark
4 ! Bill
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775
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2
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g :=

2
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3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
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3 ! Mark
4 ! Bill

3

775

10
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V
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1
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(105)  

 
 

(106)  

 
 

• Given this rule, structures like IP2 will always be interpreted as functions from 
individuals to whatever the type of IP1 is.  

• In this case  IP1 is of type t, as we have already established.  
• Thus, IP2  will be a predicate of individuals, in other words, an expression of type 

<e,t> 
 

(107)  

 
 

(108) ⟦IP2⟧g =  by Predicate abstraction  
lx. ⟦IP1⟧g[x/1] = by FA 
lx. ⟦vP⟧g[x/1] (⟦John⟧g[x/1] )  = by FA 
lx. ⟦loves⟧g[x/1] (⟦t1⟧g[x/1] )   (⟦John⟧g[x/1] )  = by TN, T&P 
[lx. [lz. ly. y loves z] (g[x/1](1)) (John) ]= by g[x/1] 
[lx. [lz. ly. y loves z] (x)(John)] 
lx. John loves x 
 
 
 
Binding 
 

• We call the numerical abstractors  ‘binders’ 
• As you can see from the PA rule, their role is to remove the assignment dependency 
• Roughly, ‘variable binding’ is any semantic operation which removes (or reduces) 

assignment dependency.  

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[John/1] :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! Mark
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

10

g[1/x] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1, y/2] :=

2

664

1 ! x
2 ! y
3 ! Mark
4 ! Bill

3

775

IP2

IP1

VP

DP2

him1

V

saw

DP1

Bill

1

g :=

2

4
2 ! Seth
3 ! Mark
4 ! Bill

3

5

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[John/1] :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g :=

2

664

1 ! Mark
2 ! Seth
3 ! Mark
4 ! Bill

3

775

g[x/1] :=

2

664

1 ! x
2 ! Seth
3 ! Mark
4 ! Bill

3

775

10

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

IP2

IP1

VP

DP1

t1

V

loves

DP1

John

1
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VP
<et>

DP
<<e,t>,t>

NP
<e,t>

N
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D
<<e,t>,<<e,t>,t>>

every

V
<e,<e,t>>
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DP
e

John

IP3
t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e
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<e,<e,t>>

John
e

1

DP
<<e,t>,t>

NP
<e,t>

professor

D
<<e,t>,<<e,t>,t>>

every

1
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(109)  

 
(110)  

⟦IP2⟧g =  lx. John loves x 
⟦every professor⟧ = [λf. fÎD<et> : for all z, if z is a professor, then f(z) = T ]  
 
 
⟦IP3⟧g = by FA 
⟦DP⟧g (⟦IP2⟧g )= by our earlier computation 
[λf. fÎD<,> : for all z, if z is a professor, then f(z) = T ] (lx. John loves x) = 
T iff for all z, if z is a professor, then [lx. John loves x](z) = T    = 
T iff for all z, if z is a professor, then John loves z  
 
 

 
• Nothing prevents us from having multiple abstractions in one tree  

 
 

(111)  

 
(112)  

⟦IP4⟧g =  by PA 
lx. ⟦IP3⟧g[x/1]= by FA 
lx. ⟦IP2⟧g[x/1] (⟦Anna⟧g[x/1]) = by PA 
[lx. [lz. ⟦IP1⟧g[x/1, z/4] ](⟦Anna⟧g[x/1])] = by TN and lexicon 

[IP6 at least one [IP5 2 [IP4 EXHALT [IP3 d2MAX [IP2 1 [IP1 many d1 student besidesF Ann

passed]]]]]]]

St

VP
<et>

DP
<<e,t>,t>

NP
<e,t>

N

professor

D
<<e,t>,<<e,t>,t>>

every

V
<e,<e,t>>

loves

DP
e

John

IP3
t

IP2
<e,t>

IP1
t

vP
<e,t>

t1
e

loves
<e,<e,t>>

John
e

1

DP
<<e,t>,t>

NP
<e,t>

professor

D
<<e,t>,<<e,t>,t>>

every

IP3

IP2

IP1

vP

passed

DP

many d1 student

1

d2

1

IP2

IP1

VP

DP2

Mary

V

saw

DP1

t4

4

IP4
<e,t>

IP3
t

IP2
<e,t>

IP1
t

VP

DP2

t4

V

found

DP1

t1

4

DP

Anna

1

11
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[lx. [lz. ⟦IP1⟧g[x/1, z/4] ](Anna)] = 
lx.  ⟦IP1⟧g[x/1, Anna/4]  
 
[lx.⟦IP1⟧g[x/1, Anna/4]]=by 2 application of FA 
[lx. [ly.[la. a found y]] (⟦t4⟧g[x/1, Anna /4]) (⟦t1⟧g[x/1, Anna /4]) ]= by T&P 
[lx. [ly. [la. a found y ]] (g[x/1, Anna /4] (4)) (g[x/1, Anna/4](1))] = by g[x/1, Anna/4] 
[lx. [ly. [la. a found y ]](Anna) (x)] = 
[lx. x found Anna] 
 
 
Practice:  

(113)  

 
 

(114)  

 
 

(115)  

 
 
 
 
 
 
 
 
 
 
 

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

IP2
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1

8
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(116)  

 
 

(117)  

 
 
 
 
4. Modeling quantifier scope 
 

(118) A student saw every professor. 
 
 
Reading 1: every professor was seen by a (possibly different) student 
 This reading is called ‘the inverse scope reading’ 
 
Reading 2: one student saw all professors 
 

g :=

2
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Reading 1:  
(119)  

 
⟦IP2⟧g = ly. there is an x such that: x is a student and x saw y  
⟦IP3⟧g = T iff for every y: if y is a professor, then there is an x such that: x is a student and x 
saw y  
 
 
 
Reading 2: one student saw all professors 

(120)  

 
(121) ⟦IP4⟧g = ly. for every x: if x is a professor, then y saw x 
(122) ⟦IP5⟧g = T iff there is y such that: y is a student and for every x: if x is a 

professor, then y saw x 
 
 
 
 

(123) Joe didn't invite a professor.  
Reading 1: Joe did not invite any professor, not even one 
 
Reading 2: There is one specific professor such that John did not invite her. (This reading is 
compatible with Joe inviting other professors) 
 
Reading 1:  

(124)  

IP3
t

IP2
<e,t>

IP1
t

VP
<e,t>

t1saw
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1
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⟦IP4⟧g= T iff it is not the case that there is an x such that: x is a professor and Joe invited x 
 
 
 
Reading 2: 

(125)  

 
(126)  

⟦IP3⟧g= ly. it is not the case that Joe invited y 
⟦IP4⟧g= there is a y such that: y is a professor and it is not the case that Joe invited y 
 
 
5. Quantifier raising? 
 

(127) Some student read every book on the list 
 

Scenario: There are 3 students John, Bill and Mary.  
John read book A, Bill book B, Mary book C.  
There is no individual student who read every book, but every book was read 
by one student or another 

 
We represented QR as a covert (silent) movement operation. 
 

• In order to be able to give ‘every book on the list’ a scope over ‘some student’, we 
moved it to a higher position. 
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• The test for ‘every’>’some’ reading is if the sentence is judged as true if for each book 

on the list there could be a different student who read it. 
 

• We represented QR as a movement operation. 
 

• One thing we know from the syntactic literature is that movement is sensitive to 
various boundaries (called ‘islands’). 

 
• Thus, the prediction of the movement theory of quantifier scope is that there will be 

some contexts where the inverse scope is unavailable. 
 

5.1 Empirical argument one: a finite clause 
 

(128) Some student said that every professor is fantastic.  
• Some >every 

Scenario: John said: ‘every professor is fantastic!’ 
 

• *Every>some  
Scenario: There are 3 students John, Bill and Mary.  

John said professor A is fantastic, Bill said professor B is fantastic, Mary 
said professor C fantastic.  
There is no individual student who likes every professor, but for every 
professor there is a student who said that that professor is fantastic.  

 
According to the movement theory of scopal interaction, to get the inverse scope reading 
‘every professor’ would have to move at LF and be higher than ‘some student’. 
 
The movement is impossible from this position: 
 

(129) *Who did some student say that _ is fantastic? 
 
This is why this reading is not available! 
 
5.1 Empirical argument two: a relative clause 
 

(130) John read a book that was written by every author in the list. 
 

• Some >every 
Scenario: John read a book. This one specific book was written by every author on the 

list. 
 
• *Every>some  

For every author on the list, John read a book written by that author 
 
The movement is impossible from this position: 
 

(131) *Who did John read a book that was written by __. 
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7. Other variable binding contexts 
 

• We saw how traces can get bound and serve to form the predicates that we need for 
our derivations. 

• But notice that pronouns are interpreted in exactly the same way as traces. 
• Then we expect them to serve the same function as traces: they can be assignment 

independent and serve to form predicates 
• Do we have such cases? 
 

The sentence in (132) is ambiguous.  
 
Bound readings of pronouns 
 

(132) Every mother helped her child. 
 

• Reading 1: every mother helped a child of a particular person I am pointing at (say, 
Mary). 

• Reading 2: Every mother helped her own child.  
 
Reading 1: We say that in this case the pronoun is ‘free’. This means it depends on the 
specific assignment function we picked for this context 
 
 
 
 

(133)  

 
 

(134) ⟦vP⟧g= ly. y helped the child of g(4) 
(135) ⟦IP1⟧g= T iff for all y: if y is a mother, then y helped the child of g(4) 
(136) ⟦IP1⟧g= T iff for all y: if y is a mother, then y helped the child of Mary 

 
Reading 2: the pronoun is bound 
 

• In this reading there is no specific person ‘her’ refers to. The value of ‘her’ varies with 
mothers. 

• ‘Every’ scrolls through the individuals of the world and checks if it is true that if an 
individual is a mother, then she helped the child of that individual. 

• We call this reading ‘a bound reading’ 
• ‘Her’ does not depend on the specific assignment function we assume in the context. 

 
 

(137)  

IP3

IP2

IP1

vP

her1 childhelped

t1

1

DP

every mother

IP3

IP2

IP1

vP

her4 childhelped

t1

1

DP

every mother

IP1

vP

her4 childhelped

DP

every mother

g :=


3 ! Sue
4 ! Mary

�

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

a :=

2

664

1 ! Seth
2 ! Mark
3 ! Bill
4 ! John

3

775

9
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(138) ⟦IP2⟧g= lx.x helped x’s child 
 

(139) ⟦IP3⟧g= T iff for all y: if y is a mother, then y helped the child of y 

IP3

IP2

IP1

vP

her1 childhelped

t1

1

DP

every mother

IP3

IP2

IP1

vP

her4 childhelped

t1

1

DP

every mother

IP1

vP

her4 childhelped

DP

every mother

g :=


3 ! Sue
4 ! Mary

�

g :=

2

664

1 ! John
2 ! Seth
3 ! Mark
4 ! Bill

3

775

a :=

2

664

1 ! Seth
2 ! Mark
3 ! Bill
4 ! John

3

775

9


