
Seminar: Attitude reports Fall 2022 3.11.2022

1

1

Background: the rules of interpretation, quantifiers, movement.

1. The most basic rules

In this class we will use the system of direct interpretation developed in (Heim & Kratzer 1998),
where the interpretation is assigned to syntactic constituents via interpretation function
designated by ⟦⟧.

(1) Terminal nodes
if α is a terminal node occupied by a lexical item, then ⟦α⟧ is specified in the lexicon

(2) Non-branching nodes
If α is a non-branching node and β is its daughter, ⟦α⟧=⟦β⟧

(3) Functional application
 If α is a branching node and {β γ} is the set of its daughters then if ⟦⟦β⟧ is a function whose
domain contains ⟦γ⟧, then ⟦α⟧ =⟦β⟧ (⟦γ⟧)

(4) Predicate modification
If α is a branching node and {β γ} is the set of its daughters and ⟦β⟧ and ⟦γ⟧ are both function of
type <et> then ⟦α⟧ = λxe. ⟦β⟧(x)=1 & ⟦γ⟧(x)=1.

A verb is interpreted as a function of type <et> shown in (6), for shortness I will write (7). The
interpretation for a simple sentence ‘Anna came’ is derived as shown in (9).

(5)

(6) ⟦came⟧ = λx. 1 iff x came
(7) ⟦came⟧ = λx. x came
(8) ⟦Anna⟧ = Anna
(9) ⟦Anna came⟧ = by FA

⟦came⟧ (⟦Anna⟧)= by TN
λx. 1 iff x came (Anna) = by lambda conversion
1 iff Anna came

The predicate modification rule is used to interpreted structures where multiple predicates are
stacked on tope of each other, like shown in (10)

(10)

Arriving at truth-conditions

s

Anna came

{
= [[came]]([[Anna]]) by FA

= true iff Mary 2 {x : x smokes}

=

(
true if Mary smokes, and
false if Mary does not smoke

truth-conditions

[[]] delivers the truth-conditions of the sentence.

If we know what the world is like, then in addition we also know the
truth-value, i.e., the denotation.

26 / 33

IP5
t

IP4
<et>

IP3
t

IP2
<et>

IP1

vP

t1admires

t2

1

DP

every professor
<<et>t>

2

DP

some student
<<et>t>

toyblue
IP

IP

ExcP2

s3ExcP1

IP

was not thereEvaF

except

IP

�s1IP

IP

VP

was there s2

DP

NP

s1girl

D

every

�s2

�s3

2

Seminar: Attitude reports Fall 2022 3.11.2022

2

2

(11) ⟦blue⟧ = λz. z is blue
(12) ⟦toy⟧ = λy. y is a toy
(13) ⟦blue toy⟧ = by PM

λx. ⟦blue⟧(x) =1 & ⟦toy⟧(x)=1 = by TN
λx [λz. z is blue (x)] =1 & [λy. y is a toy (x)] =1 =2 applications of lambda
conversion
λx. x is blue & x is a toy

2. Traces and pronouns, quantifier movement, predicate abstraction

2.1 Pronouns

(14) He came.

What is the meaning of ‘he’? If I am pointing at John, he can refer to John. If I am pointing at
Seth, ‘he’ can refer to Seth. It seems that the meaning of ‘he’ depends on the context and can
change its meaning.

How can we implement this? So far in our system the interpretation is not sensitive to a context.
We can change that. We will represent this by adding an index g on our interpretation function
⟦⟧g.

g will stand for a function that takes care of those expressions the meaning of which is not
specified in the lexicon. We call this function the assignment function. This is a function that
takes a pronoun and returns its reference.

Imagine that a conversation is a game, in which for each round we adopt special assumptions
about the reference of pronouns.

Let’s assume that for our specific conversation, we adopted the function g shown in (15).

(15)

(16) He likes her.

(17)

Now we need a special rule that tells us something like this: if you see a pronoun, check your g
for its meaning

Defining functions I

We can list the elements

F := {ha, bi, hb, ci, hc , ai}

=

g :=

he ! John
she ! Mary

�

=

Let F be that function f with domain {a, b, c} such that
f (a) = b, f (b) = c , f (c) = a.

29 / 47

Arriving at truth-conditions

t

he
likes her

|
g = [[came]]([[Anna]]) by FA

= true iff Mary 2 {x : x smokes}

=

(
true if Mary smokes, and
false if Mary does not smoke

truth-conditions

[[]] delivers the truth-conditions of the sentence.

If we know what the world is like, then in addition we also know the
truth-value, i.e., the denotation.

26 / 33

Seminar: Attitude reports Fall 2022 3.11.2022

3

3

(18) Pronouns Rule (the first attempt, to be revisited)
If α is a pronoun, g is a variable assignment and α∈Dom(g), then ⟦α⟧g=g(α)

Now, we have everything to interpret (16).

(19) ⟦he likes her⟧g = by FA
⟦likes her⟧g (⟦he⟧g) = by FA
⟦likes⟧g (⟦her⟧g) (⟦he⟧g) = by TN and PR
λx. λy. y likes x (g(her)) (g(he)) =by lambda conversion and g
λy. y likes Mary (g(he)) = by lambda conversion and g
1 iff John likes Mary

Why did I say that the rule must be reconsidered? Imagine this sentence:

(20) He likes him.

Imagine, a conversation where the first ‘he’ refers to John, the second ‘he’ refers to Seth.

Now we are in troubles. g is a function. It cannot give a different output for one and the same
input ‘he’. How can we fix it? We need a way of distinguishing between the two occurrences of
‘he’.

Here is what we will do. We will assume that pronouns come with invisible numerical indices.

(21) He1 likes him2.

We will change our g in such a way that it maps numerical indices into references.

(22)

We will change our pronouns rule accordingly:

(23) Pronouns Rule (the second attempt)
If αn is a pronoun, n is a numerical index, g is a variable assignment and n∈Dom(g), then
⟦αn⟧g=g(n)

(24) ⟦he1 likes him2⟧g = by FA
⟦likes he1⟧g (⟦him2⟧g) = by FA
⟦likes⟧g (⟦him2⟧g) (⟦he1⟧g) = by TN and PR
λx. λy. y likes x (g(2)) (g(1)) =by lambda conversion and g
λy. y likes Seth (g(1)) = by lambda conversion and g
1 iff John likes Seth

Defining functions I

We can list the elements

F := {ha, bi, hb, ci, hc , ai}

=

g :=

1! John
2! Seth

�

=

Let F be that function f with domain {a, b, c} such that
f (a) = b, f (b) = c , f (c) = a.

29 / 47

Seminar: Attitude reports Fall 2022 3.11.2022

4

4

2.2 Quantifiers

2.2.1 The meaning of quantifiers

There are expressions that do not refer to any object or a group or a set of objects in the world.
Let’s consider the meaning of ‘every student’. One initial hypothesis might be that ‘every
student’ denotes a group consisting of all students. In this case, we predict that (25) should have
a sensible meaning just like (26).

(25) #Every student outnumbers the professors.
(26) The class of students outnumbers the professors.

Moreover, we observe that (27) is ambiguous.

(27) Every Italian doesn't like Pavarotti.
• Meaning 1: Not every Italian likes Pavarotti.
• Meaning 2: Every Italian dislikes Pavarotti.

This is unexpected if ‘every Italian’ means ‘the class of Italians’, as shown by the unambiguous
(28). (Chierchia & McConnell-Ginet 2000)

(28) The class of Italians does not like Pavarotti.

Let’s look at another case:

(29) Some student admires every professor.

This sentence is ambiguous:

Meaning 1:

(30) One student is such that he admires every professor.
This is true in the following scenario: John is a student and he is very enthusiastic about this
university. He admires every professor

Meaning 2:

(31) For every professor there is a student such that he admires him.
This is true in the following scenario: there are 5 students in a group overall and even though
there is no one professor that everybody likes, each student admires at least one professor.

We call elements like ‘every’, ‘some’ quantifiers.

I will assume the following lexical entries for quantifiers:

(32) ⟦some⟧ = λP<et>.λQ<et>. ∃x[P(x)=1 & Q(x)=1]

(33) ⟦every⟧ =λP<et>.λQ<et>. ∀x[P(x)=1→ Q(x)=1]

Seminar: Attitude reports Fall 2022 3.11.2022

5

5

(34)

(35) ⟦every girl⟧g = by FA

⟦every⟧g (⟦girl⟧g) = by TN
 λP<et>.λQ<et>. ∀x[P(x)=1→ Q(x)=1] (λz. z is a girl) = by lambda conversion

λP<et>.λQ<et>. ∀x[[λz. z is a girl (x)]=1→ Q(x)=1] = by lambda conversion
 λQ<et>. ∀x[x is a girl → Q(x)=1]

(36) ⟦saw John⟧g = by FA
⟦saw⟧g (⟦John⟧g) = by TN
λx. λy. y saw x (John)= by lambda conversion
λy. y saw John

(37) ⟦every girl saw John⟧g = by FA
 ⟦every girl⟧g (⟦saw John⟧g) = by (35) and (36)=

 λQ<et>. ∀x[x is a girl → Q(x)=1] (λy. y saw John) = by 2 lambda conversions
1 iff ∀x[x is a girl → x saw John]

IP3

IP2
<et>

IP1

vP

t1saw

John

1

DP

every girl
<<et>t>

IP

vP

DP

every girl
<<et>t>

saw
<e<et>>

John
e

IP

vP

John
e

saw
<e<et>>

DP

NP

girl
<et>

D

every
<<et><<et>t>>

IP

IP

ExcP2

s3ExcP1

IP

was not thereEvaF

except

IP

�s1IP

IP

VP

was there s2

DP

NP

s1girl

D

every

�s2

�s3

1

Seminar: Attitude reports Fall 2022 3.11.2022

6

6

2.2.2 Quantifier raising

There is a problem with interpreting quantifiers in the object position.

(38)

‘Saw’ and ‘every girl’ cannot compose by any of our rules. ‘every girl’ is looking for a predicate
of type <et> . ‘Saw’ does not have the right type.

Here is what we will do. We will say that quantifier can undergo an invisible movement at the
level of the logical form (LF). And we are going to design special rules to interpret this
movement.

A quantificational DP like ‘every girl’ moves. It lives a trace of type e. A trace is like a pronoun.
Think of this transformation as if we are turning this sentence into (40).

(39)

(40) Every girl is such that John saw her1.

The rules we are going to develop will ensure that ‘every girl’ has a predicate of type <et> at its
sister.

In order to interpret the resulting structure, we need to do two things: (1) modify out Pronouns
rule in such a way that it can also apply to traces; (2) add a rule that allows us to interpret
numerical indices like 1 in the structure. Those rules are given in (41) and (42).

IP3

IP2
<et>

IP1

vP

t1saw

John

1

DP

every girl
<<et>t>

IP

vP

DP

every girl
<<et>t>

saw
<e<et>>

John
e

IP

vP

John
e

saw
<e<et>>

DP

NP

girl
<et>

D

every
<<et><<et>t>>

IP

IP

ExcP2

s3ExcP1

IP

was not thereEvaF

except

IP

�s1IP

IP

VP

was there s2

DP

NP

s1girl

D

every

�s2

�s3

1

IP3

IP2
<et>

IP1

vP

t1saw

John

1

DP

every girl
<<et>t>

IP

vP

DP

every girl
<<et>t>

saw
<e<et>>

John
e

IP

vP

John
e

saw
<e<et>>

DP

NP

girl
<et>

D

every
<<et><<et>t>>

IP

IP

ExcP2

s3ExcP1

IP

was not thereEvaF

except

IP

�s1IP

IP

VP

was there s2

DP

NP

s1girl

D

every

�s2

�s3

1

Seminar: Attitude reports Fall 2022 3.11.2022

7

7

(41) Traces and Pronouns Rule
If αn is a trace or a pronoun, n is a numerical index, g is a variable assignment and n∈Dom(g),
then ⟦αn⟧g=g(n)

(42) Predicate abstraction
If α is a branching node and {β γ} is the set of its daughters, where β is a numerical index n, then
for any variable assignment g, ⟦α⟧g = λx. ⟦γ⟧g(n->x), where g(n->x) is a function that is just like g,
but it assigns the value x to the numerical index n.

The idea is this: we fill the object argument of ‘saw’ with a variable and bind it creating a
predicate.

(43) ⟦IP2⟧g = by Predicate abstraction
λx. ⟦IP1⟧g(1->x) = by FA
λx. ⟦vP⟧g(1->x) (⟦John⟧g(1->x)) = by FA
λx. ⟦saw⟧g(1->x) (⟦t1⟧g(1->x)) (⟦John⟧g(1->x)) = by TN, T&P
λx. [λz. λy. y saw z (g(1->x)(1)) (John)] = by 2 applications of lambda conversion

and by g
λx. John saw x

(44) ⟦IP3⟧g = by FA
⟦every girl⟧g (⟦IP2⟧g) = by (35) and (43)
λQ<et>. ∀x[x is a girl → Q(x)=1] (λy. John saw y) = by 2 lambda conversions
1 iff ∀x[x is a girl → John saw x]

Now we have a handle on the ambiguity of (29) (repeated below as (45)).

(45) Some student admires every professor.

It can have two logical forms. Each meaning corresponds to one of the forms.

The inverse scope corresponds to the LF given in (46).

(46)

IP3

IP2
<et>

IP1

vP

t1saw

John

1

DP

every girl
<<et>t>

IP

vP

DP

every girl
<<et>t>

saw
<e<et>>

John
e

IP

vP

John
e

saw
<e<et>>

DP

NP

girl
<et>

D

every
<<et><<et>t>>

IP3
t

IP2
<et>

IP1

vP

t1admires

DP

some student
<<et>t>

1

DP

every professor
<<et>t>

1

Seminar: Attitude reports Fall 2022 3.11.2022

8

8

‘Every professor’ composes with the predicate created by abstraction. This predicate contains
‘some student’.

(47) ⟦IP2⟧g = λze. ∃x[x is a student & x admires z]
(48) ⟦(46)⟧g = 1 iff ∀y[y is a professor → ∃x[x is a student & x admires y]]
(49) Paraphrase: every professor is such that some student admires him

The direct scope is derived by two LF movements. The highest quantificational DP takes the
widest scope in the sentence. The first LF movement is drive by the type-mismatch.

(50)

(51) ⟦IP3⟧g = λze. ∀y[y is a professor → z admires y]
(the set of things that admire every professor)

(52) ⟦(50)⟧g = 1 iff ∃x[x is a student & ∀y[y is a professor → x admires y]]
(53) Paraphrase: There is a student such that he admires every professor.

Literature:
Chierchia & McConnell-Ginet 2000, Meaning and grammar. Cambridge: MIT Press
Heim & Kratzer 1998, Semantics in generative grammar. Oxford: Blackwell

IP5
t

IP4
<et>

IP3
t

IP2
<et>

IP1

vP

t1admires

t2

1

DP

every professor
<<et>t>

2

DP

some student
<<et>t>

IP

IP

ExcP2

s3ExcP1

IP

was not thereEvaF

except

IP

�s1IP

IP

VP

was there s2

DP

NP

s1girl

D

every

�s2

�s3

2

